論文の概要: Hand Shape and Gesture Recognition using Multiscale Template Matching,
Background Subtraction and Binary Image Analysis
- arxiv url: http://arxiv.org/abs/2402.09663v1
- Date: Thu, 15 Feb 2024 02:21:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 17:16:55.635317
- Title: Hand Shape and Gesture Recognition using Multiscale Template Matching,
Background Subtraction and Binary Image Analysis
- Title(参考訳): マルチスケールテンプレートマッチング,バックグラウンドサブトラクション,バイナリ画像解析を用いた手形状とジェスチャー認識
- Authors: Ketan Suhaas Saichandran
- Abstract要約: 背景サブトラクションの統合を利用して、ハンドオブジェクトのバイナリイメージを導出する。
この手法は単純ではあるが,手形分類作業における有効性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a hand shape classification approach employing multiscale
template matching. The integration of background subtraction is utilized to
derive a binary image of the hand object, enabling the extraction of key
features such as centroid and bounding box. The methodology, while simple,
demonstrates effectiveness in basic hand shape classification tasks, laying the
foundation for potential applications in straightforward human-computer
interaction scenarios. Experimental results highlight the system's capability
in controlled environments.
- Abstract(参考訳): 本稿では,マルチスケールテンプレートマッチングを用いた手形分類手法を提案する。
背景サブトラクションの統合により、ハンドオブジェクトのバイナリイメージを導出し、centroidやbounding boxといった重要な特徴の抽出を可能にする。
この方法論は単純ではあるが、基本的な手形分類タスクにおいて有効性を示し、単純な人間とコンピュータの相互作用シナリオにおける潜在的な応用の基礎を築いている。
実験の結果,制御環境におけるシステムの能力が強調された。
関連論文リスト
- SHIC: Shape-Image Correspondences with no Keypoint Supervision [106.99157362200867]
正準曲面マッピングは、オブジェクトの各ピクセルを3Dテンプレートの対応する点に割り当てることで、キーポイント検出を一般化する。
人間の分析のためにDensePoseによって人気を得た著者は、この概念をより多くのカテゴリに適用しようと試みている。
そこで本研究では,手動による指導を伴わない標準地図学習手法ShiCを紹介し,ほとんどのカテゴリにおいて教師付き手法よりも優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2024-07-26T17:58:59Z) - Automatic Discovery of Visual Circuits [66.99553804855931]
本稿では,視覚モデルにおける視覚的概念の認識の基盤となる計算グラフのサブグラフを抽出するスケーラブルな手法について検討する。
提案手法は, モデル出力に因果的に影響を及ぼす回路を抽出し, これらの回路を編集することで, 敵攻撃から大きな事前学習モデルを守ることができることがわかった。
論文 参考訳(メタデータ) (2024-04-22T17:00:57Z) - Self-Supervised Equivariant Learning for Oriented Keypoint Detection [35.94215211409985]
我々は、回転同変CNNを用いた自己教師付き学習フレームワークを導入し、ロバスト指向キーポイントの検出を学習する。
ヒストグラムに基づく配向マップのトレーニングのために,合成変換により生成した画像対による高密度配向損失を提案する。
提案手法は,画像マッチングベンチマークとカメラポーズ推定ベンチマークにおいて,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2022-04-19T02:26:07Z) - Semantic keypoint-based pose estimation from single RGB frames [64.80395521735463]
一つのRGB画像からオブジェクトの連続6-DoFポーズを推定する手法を提案する。
このアプローチは、畳み込みネットワーク(convnet)によって予測されるセマンティックキーポイントと、変形可能な形状モデルを組み合わせる。
提案手法は,インスタンスベースのシナリオとクラスベースのシナリオの両方に対して,6-DoFオブジェクトのポーズを正確に復元できることを示す。
論文 参考訳(メタデータ) (2022-04-12T15:03:51Z) - Revisiting spatio-temporal layouts for compositional action recognition [63.04778884595353]
私たちは、アクション認識にオブジェクト中心のアプローチを取ります。
本論文の主な焦点は、合成/ファウショット動作認識である。
レイアウトモデルとの融合による外観モデルの性能向上を実証する。
論文 参考訳(メタデータ) (2021-11-02T23:04:39Z) - A deep learning approach to clustering visual arts [7.363576598794859]
本稿では,deep Learning approach to cLustering vIsUal artSを提案する。
この方法は、事前訓練された畳み込みネットワークを使用して特徴を抽出し、これらの特徴を深い組込みクラスタリングモデルに供給する。
生の入力データを潜在空間にマッピングするタスクは、この潜在空間内のクラスタセントロイドの集合を見つけるタスクと共同で最適化される。
論文 参考訳(メタデータ) (2021-06-11T08:35:26Z) - Brain Inspired Object Recognition System [0.0]
方位勾配のヒストグラム、局所二分パターン、および対象画像から抽出された主成分を用いる。
計算理論は最初に、脳の情報処理機構の概念を用いて開発された。
提案モデルの性能を検証するために,15の公開データセットを用いて実験を行った。
論文 参考訳(メタデータ) (2021-05-15T14:42:17Z) - Saliency-driven Class Impressions for Feature Visualization of Deep
Neural Networks [55.11806035788036]
分類に欠かせないと思われる特徴を視覚化することは有利である。
既存の可視化手法は,背景特徴と前景特徴の両方からなる高信頼画像を生成する。
本研究では,あるタスクにおいて最も重要であると考えられる識別的特徴を可視化するための,サリエンシ駆動型アプローチを提案する。
論文 参考訳(メタデータ) (2020-07-31T06:11:06Z) - TSIT: A Simple and Versatile Framework for Image-to-Image Translation [103.92203013154403]
画像間翻訳のためのシンプルで多用途なフレームワークを提案する。
新たに提案した特徴変換を用いた2ストリーム生成モデルを提案する。
これにより、マルチスケールのセマンティック構造情報とスタイル表現を効果的に捕捉し、ネットワークに融合させることができる。
体系的な研究は、提案手法をいくつかの最先端タスク固有のベースラインと比較し、知覚的品質と定量的評価の両面での有効性を検証する。
論文 参考訳(メタデータ) (2020-07-23T15:34:06Z) - Deep convolutional embedding for digitized painting clustering [14.228308494671703]
本稿では,デジタル絵画クラスタリングのための深層畳み込み埋め込みモデルを提案する。
このモデルは、同じ問題に対して他の最先端のディープクラスタリングアプローチより優れている。
提案手法は,絵画データセットにおける視覚的リンク検索や歴史的知識発見など,美術関連タスクに有用である。
論文 参考訳(メタデータ) (2020-03-19T06:49:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。