論文の概要: How to Train Data-Efficient LLMs
- arxiv url: http://arxiv.org/abs/2402.09668v1
- Date: Thu, 15 Feb 2024 02:27:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 17:18:09.088632
- Title: How to Train Data-Efficient LLMs
- Title(参考訳): データ効率の良いLCMのトレーニング方法
- Authors: Noveen Sachdeva, Benjamin Coleman, Wang-Cheng Kang, Jianmo Ni, Lichan
Hong, Ed H. Chi, James Caverlee, Julian McAuley, Derek Zhiyuan Cheng
- Abstract要約: 事前学習言語モデル(LLM)に対するデータ効率のアプローチについて検討する。
Ask-LLMと密度サンプリングがそれぞれのカテゴリで最適であることがわかった。
何百もの評価タスクと事前学習作業を含む19個のサンプルを比較したところ,Ask-LLMと密度がそれぞれのカテゴリで最適な方法であることが判明した。
- 参考スコア(独自算出の注目度): 56.41105687693619
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The training of large language models (LLMs) is expensive. In this paper, we
study data-efficient approaches for pre-training LLMs, i.e., techniques that
aim to optimize the Pareto frontier of model quality and training resource/data
consumption. We seek to understand the tradeoffs associated with data selection
routines based on (i) expensive-to-compute data-quality estimates, and (ii)
maximization of coverage and diversity-based measures in the feature space. Our
first technique, Ask-LLM, leverages the zero-shot reasoning capabilities of
instruction-tuned LLMs to directly assess the quality of a training example. To
target coverage, we propose Density sampling, which models the data
distribution to select a diverse sample. In our comparison of 19 samplers,
involving hundreds of evaluation tasks and pre-training runs, we find that
Ask-LLM and Density are the best methods in their respective categories.
Coverage sampling can recover the performance of the full data, while models
trained on Ask-LLM data consistently outperform full-data training -- even when
we reject 90% of the original dataset, while converging up to 70% faster.
- Abstract(参考訳): 大規模言語モデルのトレーニング(LLM)は高価である。
本稿では,モデル品質のParetoフロンティアとトレーニングリソース/データ消費の最適化を目的とした,事前学習型LCMのためのデータ効率アプローチについて検討する。
私たちはデータ選択ルーチンに関連するトレードオフを理解するために
(i)計算コストが高いデータ品質の推定値、
(ii)機能空間におけるカバー範囲の最大化と多様性に基づく尺度。
最初の技術であるAsk-LLMは、訓練例の品質を直接評価するために、命令調整LDMのゼロショット推論機能を利用する。
対象範囲を推定するために,データ分布をモデル化して多様なサンプルを選択する密度サンプリングを提案する。
何百もの評価タスクと事前学習作業を含む19個のサンプルを比較したところ,Ask-LLMと密度がそれぞれのカテゴリで最適であることがわかった。
カバレッジサンプリングは全データのパフォーマンスを回復するが、Ask-LLMデータでトレーニングされたモデルは、元のデータセットの90%を拒否しても、最大70%高速に収束する。
関連論文リスト
- Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
実世界のデータセットは、しばしば冗長でノイズの多いデータを含み、トレーニング効率とモデルパフォーマンスに悪影響を及ぼす。
データ選択は、データセット全体から最も代表的なサンプルを特定することを約束している。
より堅牢で一般化可能なサンプル選択にマルチモーダル情報を活用するCLIPを利用した新しいデータ選択フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-15T03:00:58Z) - Multi-Agent Collaborative Data Selection for Efficient LLM Pretraining [40.21546440726592]
本稿では,大規模言語モデル(LLM)事前学習のための新しいマルチエージェント協調データ選択機構を提案する。
このフレームワークでは、各データ選択メソッドが独立したエージェントとして機能し、エージェントコンソールは、すべてのエージェントからの情報を動的に統合するように設計されている。
論文 参考訳(メタデータ) (2024-10-10T16:45:28Z) - Improving Pretraining Data Using Perplexity Correlations [56.41097718862742]
我々は,パープレキシティ-ベンチマーク相関の推定を中心に,データ選択のための新しい統計フレームワークを構築した。
8つのベンチマークで1億6000万のパラメータスケールで事前トレーニングを行う場合,提案手法は各ベンチマークにおいてDSIRよりも優れる。
論文 参考訳(メタデータ) (2024-09-09T17:23:29Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
モデル性能はトレーニングデータの圧縮比と負の相関関係にあり,トレーニング損失が小さくなるのが普通である。
エントロピー法則の知見に基づいて, 極めて効率的で普遍的なデータ選択法を提案する。
また,モデルトレーニング開始時の潜在的な性能リスクを検出するエントロピー法則の興味深い応用を提案する。
論文 参考訳(メタデータ) (2024-07-09T08:14:29Z) - DsDm: Model-Aware Dataset Selection with Datamodels [81.01744199870043]
標準的なプラクティスは、データ品質という人間の考え方にマッチする例をフィルタリングすることです。
質の高い"データソースとの類似性に応じた選択は、ランダムに選択するデータに比べてパフォーマンスが向上しない(さらに傷つく)可能性がある。
我々のフレームワークは、データ品質に関する手作業による概念を回避し、学習プロセスがターゲットタスクの予測にデータポイントをトレーニングする方法を明確にモデル化する。
論文 参考訳(メタデータ) (2024-01-23T17:22:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。