論文の概要: AI Hospital: Interactive Evaluation and Collaboration of LLMs as Intern
Doctors for Clinical Diagnosis
- arxiv url: http://arxiv.org/abs/2402.09742v2
- Date: Wed, 21 Feb 2024 08:25:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-22 18:50:48.630299
- Title: AI Hospital: Interactive Evaluation and Collaboration of LLMs as Intern
Doctors for Clinical Diagnosis
- Title(参考訳): AI病院 : 臨床診断における内科医としてのLLMの相互評価と連携
- Authors: Zhihao Fan, Jialong Tang, Wei Chen, Siyuan Wang, Zhongyu Wei, Jun Xi,
Fei Huang, Jingren Zhou
- Abstract要約: リアルタイムのインタラクティブな診断環境を構築するために設計されたフレームワークであるAI Hospitalを紹介する。
様々な大規模言語モデル(LLM)は、対話的診断のためのインターン医師として機能する。
我々は,医療部長の監督の下で,反復的な議論と紛争解決プロセスを含む協調的なメカニズムを導入する。
- 参考スコア(独自算出の注目度): 72.50974375416239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The incorporation of Large Language Models (LLMs) in healthcare marks a
significant advancement. However, the application has predominantly been
limited to discriminative and question-answering tasks, which does not fully
leverage their interactive potential. To address this limitation, our paper
presents AI Hospital, a framework designed to build a real-time interactive
diagnosis environment. To simulate the procedure, we collect high-quality
medical records to create patient, examiner, and medical director agents. AI
Hospital is then utilized for the interactive evaluation and collaboration of
LLMs. Initially, we create a Multi-View Medical Evaluation (MVME) benchmark
where various LLMs serve as intern doctors for interactive diagnosis.
Subsequently, to improve diagnostic accuracy, we introduce a collaborative
mechanism that involves iterative discussions and a dispute resolution process
under the supervision of the medical director. In our experiments, we validate
the reliability of AI Hospital. The results not only explore the feasibility of
apply LLMs in clinical consultation but also confirm the effectiveness of the
dispute resolution focused collaboration method.
- Abstract(参考訳): 医療におけるLarge Language Models (LLMs) の導入は大きな進歩である。
しかし、このアプリケーションは、そのインタラクティブな潜在能力を十分に活用していない、差別的および質問応答タスクに限定されている。
この制限に対処するため,本稿では,リアルタイム対話型診断環境を構築するためのフレームワークであるAI Hospitalを提案する。
手順をシミュレートするために,我々は高品質な医療記録を収集し,患者,検査官,医療監督エージェントを作成する。
AI HospitalはLLMのインタラクティブな評価とコラボレーションに使用される。
まず,多視点医療評価(MVME)ベンチマークを作成し,様々なLSMが内科医の対話的診断を行う。
その後, 診断精度を向上させるため, 医院長の監督のもと, 反復的な議論と紛争解決プロセスを伴う協調的なメカニズムを導入する。
実験では,AI病院の信頼性を検証した。
その結果, 臨床相談におけるLLMの適用可能性だけでなく, 紛争解決に焦点を当てた協調手法の有効性も確認できた。
関連論文リスト
- CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBenchは、14のエキスパートによるコア臨床シナリオを備えた総合的なベンチマークである。
このベンチマークの信頼性はいくつかの点で確認されている。
論文 参考訳(メタデータ) (2024-10-04T15:15:36Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
LVLM(Large Vision-Language Model)は、画像、テキスト、生理学的信号などの多様なデータタイプを扱うことができる。
GMAI-MMBenchは、よく分類されたデータ構造と、これまででもっとも包括的な一般医療用AIベンチマークである。
38の医療画像モダリティ、18の臨床関連タスク、18の部門、視覚質問回答(VQA)フォーマットの4つの知覚的粒度からなる284のデータセットで構成されている。
論文 参考訳(メタデータ) (2024-08-06T17:59:21Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
VLM(Vision-Language Models)は、医用画像を分析し、自然言語の相互作用に関与することによって、臨床医を支援する。
VLMはしばしば「幻覚的」な振る舞いを示し、文脈的マルチモーダル情報に基づかないテキスト出力を生成する。
本稿では,臨床推論の象徴的表現を用いて医療知識にVLMを基盤とする新たなアライメントアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T23:19:28Z) - COGNET-MD, an evaluation framework and dataset for Large Language Model benchmarks in the medical domain [1.6752458252726457]
大規模言語モデル(LLM)は最先端の人工知能(AI)技術である。
医療領域認知ネットワーク評価ツールキット(COGNET-MD)について概説する。
医用テキストの解釈におけるLCMの能力を評価するのが困難であるスコアフレームを提案する。
論文 参考訳(メタデータ) (2024-05-17T16:31:56Z) - AgentClinic: a multimodal agent benchmark to evaluate AI in simulated clinical environments [2.567146936147657]
シミュレーションされた臨床環境における大規模言語モデル(LLM)の評価のためのマルチモーダルエージェントベンチマークであるAgentClinicを紹介する。
我々は,AgentClinicの逐次決定形式におけるMedQA問題の解決が極めて困難であることに気付き,診断精度が元の精度の10分の1以下に低下することを発見した。
論文 参考訳(メタデータ) (2024-05-13T17:38:53Z) - Large Language Models in the Clinic: A Comprehensive Benchmark [63.21278434331952]
診療所の大規模言語モデル(LLM)をよりよく理解するためのベンチマークであるClimateBenchを構築した。
まず、さまざまな臨床言語の生成、理解、推論タスクを含む11の既存のデータセットを収集します。
次に,現実の実践において複雑だが一般的である6つの新しいデータセットと臨床タスクを構築した。
ゼロショット設定と少数ショット設定の両方で、20個のLDMを広範囲に評価する。
論文 参考訳(メタデータ) (2024-04-25T15:51:06Z) - Automatic Interactive Evaluation for Large Language Models with State Aware Patient Simulator [21.60103376506254]
大きな言語モデル(LLM)は、人間の相互作用において顕著な熟練性を示している。
本稿では,SAPS(State-Aware patient Simulator)とAIE(Automated Interactive Evaluation)フレームワークを紹介する。
AIEとSAPSは、多ターン医師-患者シミュレーションを通じてLCMを評価するための動的で現実的なプラットフォームを提供する。
論文 参考訳(メタデータ) (2024-03-13T13:04:58Z) - Asclepius: A Spectrum Evaluation Benchmark for Medical Multi-Modal Large
Language Models [59.60384461302662]
医療マルチモーダル大言語モデル(Med-MLLM)を評価するための新しいベンチマークであるAsclepiusを紹介する。
Asclepiusは、異なる医療専門性と異なる診断能力の観点から、モデル能力の厳密かつ包括的に評価する。
また、6つのMed-MLLMの詳細な分析を行い、5人の専門家と比較した。
論文 参考訳(メタデータ) (2024-02-17T08:04:23Z) - Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization [8.456700096020601]
大規模言語モデル (LLM) は自然言語処理 (NLP) において有望であるが, 様々な臨床要約タスクにおける有効性は証明されていない。
本研究では,4つの臨床要約課題にまたがる8つのLCMに適応法を適用した。
10名の医師による臨床読影者を対象に, 要約, 完全性, 正当性, 簡潔性を評価した。ほとんどの場合, ベスト適応LSMの要約は, 医用専門家の要約と比べ, 同等(45%), 上等(36%)である。
論文 参考訳(メタデータ) (2023-09-14T05:15:01Z) - An Automatic Evaluation Framework for Multi-turn Medical Consultations
Capabilities of Large Language Models [22.409334091186995]
大型言語モデル(LLM)はしばしば幻覚に悩まされ、過度に自信があるが誤った判断を下す。
本稿では,マルチターンコンサルテーションにおける仮想医師としてのLCMの実用能力を評価するための自動評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-05T09:24:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。