論文の概要: Examining Pathological Bias in a Generative Adversarial Network
Discriminator: A Case Study on a StyleGAN3 Model
- arxiv url: http://arxiv.org/abs/2402.09786v1
- Date: Thu, 15 Feb 2024 08:34:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 16:28:38.462619
- Title: Examining Pathological Bias in a Generative Adversarial Network
Discriminator: A Case Study on a StyleGAN3 Model
- Title(参考訳): 生成型adversarial network discriminatorにおける病的バイアスの検討:stylegan3モデルを用いたケーススタディ
- Authors: Alvin Grissom II, Ryan F. Lei, Jeova Farias Sales Rocha Neto, Bailey
Lin, Ryan Trotter
- Abstract要約: StyleGAN3モデルの判別器は,画像品質と顔品質の両方でスコアを体系的に階層化する。
人種や性別が知覚される軸にまたがる色と輝度に対する差別者の偏見について検討した。
- 参考スコア(独自算出の注目度): 0.35891528014392693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative adversarial networks generate photorealistic faces that are often
indistinguishable by humans from real faces. We find that the discriminator in
the pre-trained StyleGAN3 model, a popular GAN network, systematically
stratifies scores by both image- and face-level qualities and that this
disproportionately affects images across gender, race, and other categories. We
examine the discriminator's bias for color and luminance across axes perceived
race and gender; we then examine axes common in research on stereotyping in
social psychology.
- Abstract(参考訳): 生成的な敵ネットワークは、人間と実際の顔では区別できないフォトリアリスティックな顔を生成する。
一般的なGANネットワークであるStyleGAN3モデルの判別器は,画像品質と顔品質の両方でスコアを体系的に階層化し,性別,人種,その他のカテゴリーのイメージに不均等に影響を及ぼすことがわかった。
人種や性別を知覚する軸間の色や輝度に対する判別者のバイアスを調べ,社会心理学におけるステレオタイプ研究で一般的な軸について検討した。
関連論文リスト
- Less can be more: representational vs. stereotypical gender bias in facial expression recognition [3.9698529891342207]
機械学習モデルは、トレーニングデータからバイアスを継承し、差別的または不正確な予測につながる。
本稿では、データセットから機械学習モデルへの人口統計バイアスの伝播について検討する。
ジェンダーの人口構成に焦点をあて、表現とステレオタイプという2種類の偏見を分析した。
論文 参考訳(メタデータ) (2024-06-25T09:26:49Z) - Rethinking Bias Mitigation: Fairer Architectures Make for Fairer Face
Recognition [107.58227666024791]
顔認識システムは、法執行を含む安全クリティカルなアプリケーションに広くデプロイされている。
彼らは、性別や人種など、様々な社会的デデノグラフィー次元に偏見を示す。
バイアス軽減に関するこれまでの研究は、主にトレーニングデータの事前処理に重点を置いていた。
論文 参考訳(メタデータ) (2022-10-18T15:46:05Z) - Gender Stereotyping Impact in Facial Expression Recognition [1.5340540198612824]
近年,機械学習に基づくモデルが表情認識(FER)における最も一般的なアプローチとなっている。
公開可能なFERデータセットでは、見かけ上の性別表現は概ねバランスが取れているが、個々のラベルでの性別表現はそうではない。
我々は、特定のラベルの性別比を変化させることで、異なる量のステレオタイプバイアスを持つ微分データセットを生成する。
我々は、最低バイアス条件下で、性別間の特定の感情の認識において、最大で29 % の差を観察する。
論文 参考訳(メタデータ) (2022-10-11T10:52:23Z) - Studying Bias in GANs through the Lens of Race [91.95264864405493]
本研究では, 画像生成モデルの性能と評価が, 学習データセットの人種構成にどのように影響するかを検討する。
その結果, 生成した画像の人種構成は, トレーニングデータの保存に成功していることがわかった。
しかし、推論中に高品質な画像を生成する手法であるトランケーションは、データの人種的不均衡を悪化させる。
論文 参考訳(メタデータ) (2022-09-06T22:25:56Z) - Are Commercial Face Detection Models as Biased as Academic Models? [64.71318433419636]
我々は学術的および商業的な顔検出システムを比較し、特にノイズに対する堅牢性について検討する。
現状の学術的顔検出モデルでは、ノイズの頑健性に人口格差があることがわかった。
私たちは、商用モデルは、常に学術モデルと同じくらいの偏り、あるいはより偏りがある、と結論付けます。
論文 参考訳(メタデータ) (2022-01-25T02:21:42Z) - Unravelling the Effect of Image Distortions for Biased Prediction of
Pre-trained Face Recognition Models [86.79402670904338]
画像歪みの存在下での4つの最先端深層顔認識モデルの性能評価を行った。
我々は、画像歪みが、異なるサブグループ間でのモデルの性能ギャップと関係していることを観察した。
論文 参考訳(メタデータ) (2021-08-14T16:49:05Z) - Image Representations Learned With Unsupervised Pre-Training Contain
Human-like Biases [3.0349733976070015]
本研究では,社会概念の表現とイメージの属性の相関関係を定量化する手法を開発した。
一般的なベンチマーク画像データセットであるImageNetでトレーニングされた最先端の教師なしモデルは、人種、性別、交差点バイアスを自動的に学習する。
論文 参考訳(メタデータ) (2020-10-28T15:55:49Z) - Learning from Failure: Training Debiased Classifier from Biased
Classifier [76.52804102765931]
ニューラルネットワークは、所望の知識よりも学習が簡単である場合にのみ、素早い相関に依存することを学習していることを示す。
本稿では,一対のニューラルネットワークを同時にトレーニングすることで,障害に基づくデバイアス化手法を提案する。
本手法は,合成データセットと実世界のデータセットの両方において,各種バイアスに対するネットワークのトレーニングを大幅に改善する。
論文 参考訳(メタデータ) (2020-07-06T07:20:29Z) - InsideBias: Measuring Bias in Deep Networks and Application to Face
Gender Biometrics [73.85525896663371]
この研究は、ディープニューラルネットワークアーキテクチャに基づく学習プロセスのバイアスについて検討する。
一般的なディープニューラルネットワークに基づく2つの性別検出モデルを採用している。
バイアスモデルを検出する新しい手法であるInsideBiasを提案する。
論文 参考訳(メタデータ) (2020-04-14T15:20:50Z) - Imperfect ImaGANation: Implications of GANs Exacerbating Biases on
Facial Data Augmentation and Snapchat Selfie Lenses [20.36399588424965]
一般的なGAN(Generative Adversarial Networks)は,顔ショットのスキュー分布を与えられると,性別や肌の色調の軸に沿ってバイアスが増すことを示す。
GANはまた、非白人の肌の色を明るくし、工学教授の顔を生成する際に女性の顔の特徴を男性に変化させることによってバイアスを悪化させる。
論文 参考訳(メタデータ) (2020-01-26T21:57:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。