Nonlinear Filtering with Brenier Optimal Transport Maps
- URL: http://arxiv.org/abs/2310.13886v2
- Date: Fri, 2 Feb 2024 18:35:11 GMT
- Title: Nonlinear Filtering with Brenier Optimal Transport Maps
- Authors: Mohammad Al-Jarrah, Niyizhen Jin, Bamdad Hosseini, Amirhossein
Taghvaei
- Abstract summary: This paper is concerned with the problem of nonlinear filtering, i.e., computing the conditional distribution of the state of a dynamical system.
Conventional sequential importance resampling (SIR) particle filters suffer from fundamental limitations, in scenarios involving degenerate likelihoods or high-dimensional states.
In this paper, we explore an alternative method, which is based on estimating the Brenier optimal transport (OT) map from the current prior distribution of the state to the posterior distribution at the next time step.
- Score: 4.745059103971596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper is concerned with the problem of nonlinear filtering, i.e.,
computing the conditional distribution of the state of a stochastic dynamical
system given a history of noisy partial observations. Conventional sequential
importance resampling (SIR) particle filters suffer from fundamental
limitations, in scenarios involving degenerate likelihoods or high-dimensional
states, due to the weight degeneracy issue. In this paper, we explore an
alternative method, which is based on estimating the Brenier optimal transport
(OT) map from the current prior distribution of the state to the posterior
distribution at the next time step. Unlike SIR particle filters, the OT
formulation does not require the analytical form of the likelihood. Moreover,
it allows us to harness the approximation power of neural networks to model
complex and multi-modal distributions and employ stochastic optimization
algorithms to enhance scalability. Extensive numerical experiments are
presented that compare the OT method to the SIR particle filter and the
ensemble Kalman filter, evaluating the performance in terms of sample
efficiency, high-dimensional scalability, and the ability to capture complex
and multi-modal distributions.
Related papers
- On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Normalising Flow-based Differentiable Particle Filters [19.09640071505051]
We present a differentiable particle filtering framework that uses (conditional) normalising flows to build its dynamic model, proposal distribution, and measurement model.
We derive the theoretical properties of the proposed filters and evaluate the proposed normalising flow-based differentiable particle filters' performance through a series of numerical experiments.
arXiv Detail & Related papers (2024-03-03T12:23:17Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
arXiv Detail & Related papers (2024-02-15T08:51:49Z) - An Ensemble Score Filter for Tracking High-Dimensional Nonlinear Dynamical Systems [10.997994515823798]
We propose an ensemble score filter (EnSF) for solving high-dimensional nonlinear filtering problems.
Unlike existing diffusion models that train neural networks to approximate the score function, we develop a training-free score estimation.
EnSF provides surprising performance, compared with the state-of-the-art Local Ensemble Transform Kalman Filter method.
arXiv Detail & Related papers (2023-09-02T16:48:02Z) - Computational Doob's h-transforms for Online Filtering of Discretely
Observed Diffusions [65.74069050283998]
We propose a computational framework to approximate Doob's $h$-transforms.
The proposed approach can be orders of magnitude more efficient than state-of-the-art particle filters.
arXiv Detail & Related papers (2022-06-07T15:03:05Z) - Deep Learning for the Benes Filter [91.3755431537592]
We present a new numerical method based on the mesh-free neural network representation of the density of the solution of the Benes model.
We discuss the role of nonlinearity in the filtering model equations for the choice of the domain of the neural network.
arXiv Detail & Related papers (2022-03-09T14:08:38Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Innovative And Additive Outlier Robust Kalman Filtering With A Robust
Particle Filter [68.8204255655161]
We propose CE-BASS, a particle mixture Kalman filter which is robust to both innovative and additive outliers, and able to fully capture multi-modality in the distribution of the hidden state.
Furthermore, the particle sampling approach re-samples past states, which enables CE-BASS to handle innovative outliers which are not immediately visible in the observations, such as trend changes.
arXiv Detail & Related papers (2020-07-07T07:11:09Z) - Multiplicative Gaussian Particle Filter [18.615555573235987]
We propose a new sampling-based approach for approximate inference in filtering problems.
Instead of approximating conditional distributions with a finite set of states, as done in particle filters, our approach approximates the distribution with a weighted sum of functions from a set of continuous functions.
arXiv Detail & Related papers (2020-02-29T09:19:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.