A Deep Learning Approach to Radar-based QPE
- URL: http://arxiv.org/abs/2402.09846v1
- Date: Thu, 15 Feb 2024 10:05:18 GMT
- Title: A Deep Learning Approach to Radar-based QPE
- Authors: Ting-Shuo Yo, Shih-Hao Su, Jung-Lien Chu, Chiao-Wei Chang, and
Hung-Chi Kuo
- Abstract summary: We propose a volume-to-point framework for quantitative precipitation estimation (QPE) based on the Quantitative Precipitation Estimation and Segregation Using Multiple Sensor (QPESUMS) Mosaic Radar data set.
With a data volume consisting of the time series of gridded radar reflectivities over the Taiwan area, we used machine learning algorithms to establish a statistical model for QPE in weather stations.
- Score: 0.11184789007828977
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this study, we propose a volume-to-point framework for quantitative
precipitation estimation (QPE) based on the Quantitative Precipitation
Estimation and Segregation Using Multiple Sensor (QPESUMS) Mosaic Radar data
set. With a data volume consisting of the time series of gridded radar
reflectivities over the Taiwan area, we used machine learning algorithms to
establish a statistical model for QPE in weather stations. The model extracts
spatial and temporal features from the input data volume and then associates
these features with the location-specific precipitations. In contrast to QPE
methods based on the Z-R relation, we leverage the machine learning algorithms
to automatically detect the evolution and movement of weather systems and
associate these patterns to a location with specific topographic attributes.
Specifically, we evaluated this framework with the hourly precipitation data of
45 weather stations in Taipei during 2013-2016. In comparison to the
operational QPE scheme used by the Central Weather Bureau, the volume-to-point
framework performed comparably well in general cases and excelled in detecting
heavy-rainfall events. By using the current results as the reference benchmark,
the proposed method can integrate the heterogeneous data sources and
potentially improve the forecast in extreme precipitation scenarios.
Related papers
- WeatherReal: A Benchmark Based on In-Situ Observations for Evaluating Weather Models [11.016845506758841]
We introduce WeatherReal, a novel benchmark dataset for weather forecasting derived from global near-surface in-situ observations.
This paper details the sources and processing methodologies underlying the dataset, and illustrates the advantage of in-situ observations in capturing hyper-local and extreme weather.
Our work aims to advance the AI-based weather forecasting research towards a more application-focused and operation-ready approach.
arXiv Detail & Related papers (2024-09-14T08:53:46Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - GPTCast: a weather language model for precipitation nowcasting [0.0]
GPTCast is a generative deep-learning method for ensemble nowcast of radar-based precipitation.
We employ a GPT model as a forecaster to learn precipitation dynamics using tokenized radar images.
arXiv Detail & Related papers (2024-07-02T09:25:58Z) - Generative Data Assimilation of Sparse Weather Station Observations at Kilometer Scales [5.453657018459705]
We demonstrate the viability of score-based data assimilation in the context of realistically complex km-scale weather.
By incorporating observations from 40 weather stations, 10% lower RMSEs on left-out stations are attained.
It is a ripe time to explore extensions that combine increasingly ambitious regional state generators with an increasing set of in situ, ground-based, and satellite remote sensing data streams.
arXiv Detail & Related papers (2024-06-19T10:28:11Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Short-term Precipitation Forecasting in The Netherlands: An Application
of Convolutional LSTM neural networks to weather radar data [0.0]
The research exploits the combination of Convolutional Neural Networks (CNNs) layers for spatial pattern recognition and LSTM network layers for modelling temporal sequences.
The model was trained and validated on weather radar data from the Netherlands.
Results indicate high accuracy in predicting the direction and intensity of precipitation movements.
arXiv Detail & Related papers (2023-12-02T18:13:45Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
We analyze a massive dataset of wind measured from anemometers located at 10 m height in 32 locations in Italy.
We train supervised learning algorithms using the past history of wind to predict its value at a future time.
We find that the optimal design as well as its performance vary with the location.
arXiv Detail & Related papers (2022-04-01T14:55:10Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.