Investigation of Federated Learning Algorithms for Retinal Optical
Coherence Tomography Image Classification with Statistical Heterogeneity
- URL: http://arxiv.org/abs/2402.10035v1
- Date: Thu, 15 Feb 2024 15:58:42 GMT
- Title: Investigation of Federated Learning Algorithms for Retinal Optical
Coherence Tomography Image Classification with Statistical Heterogeneity
- Authors: Sanskar Amgain, Prashant Shrestha, Sophia Bano, Ignacio del Valle
Torres, Michael Cunniffe, Victor Hernandez, Phil Beales, Binod Bhattarai
- Abstract summary: We investigate the effectiveness of FedAvg and FedProx to train an OCT image classification model in a decentralized fashion.
We partitioned a publicly available OCT dataset across multiple clients under IID and Non-IID settings and conducted local training on the subsets for each client.
- Score: 6.318288071829899
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose: We apply federated learning to train an OCT image classifier
simulating a realistic scenario with multiple clients and statistical
heterogeneous data distribution where data in the clients lack samples of some
categories entirely.
Methods: We investigate the effectiveness of FedAvg and FedProx to train an
OCT image classification model in a decentralized fashion, addressing privacy
concerns associated with centralizing data. We partitioned a publicly available
OCT dataset across multiple clients under IID and Non-IID settings and
conducted local training on the subsets for each client. We evaluated two
federated learning methods, FedAvg and FedProx for these settings.
Results: Our experiments on the dataset suggest that under IID settings, both
methods perform on par with training on a central data pool. However, the
performance of both algorithms declines as we increase the statistical
heterogeneity across the client data, while FedProx consistently performs
better than FedAvg in the increased heterogeneity settings.
Conclusion: Despite the effectiveness of federated learning in the
utilization of private data across multiple medical institutions, the large
number of clients and heterogeneous distribution of labels deteriorate the
performance of both algorithms. Notably, FedProx appears to be more robust to
the increased heterogeneity.
Related papers
- FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - CADIS: Handling Cluster-skewed Non-IID Data in Federated Learning with
Clustered Aggregation and Knowledge DIStilled Regularization [3.3711670942444014]
Federated learning enables edge devices to train a global model collaboratively without exposing their data.
We tackle a new type of Non-IID data, called cluster-skewed non-IID, discovered in actual data sets.
We propose an aggregation scheme that guarantees equality between clusters.
arXiv Detail & Related papers (2023-02-21T02:53:37Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
clustering clusters (FedC) problem aims to accurately partition unlabeled data samples distributed over massive clients into finite clients under the orchestration of a server.
We propose a novel FedC algorithm using differential privacy convergence technique, referred to as DP-Fed, in which partial participation and multiple clients are also considered.
Various attributes of the proposed DP-Fed are obtained through theoretical analyses of privacy protection, especially for the case of non-identically and independently distributed (non-i.i.d.) data.
arXiv Detail & Related papers (2023-01-03T05:38:43Z) - FedSkip: Combatting Statistical Heterogeneity with Federated Skip
Aggregation [95.85026305874824]
We introduce a data-driven approach called FedSkip to improve the client optima by periodically skipping federated averaging and scattering local models to the cross devices.
We conduct extensive experiments on a range of datasets to demonstrate that FedSkip achieves much higher accuracy, better aggregation efficiency and competing communication efficiency.
arXiv Detail & Related papers (2022-12-14T13:57:01Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
We show that not only the issue of data heterogeneity in current setups is not necessarily a problem but also in fact it can be beneficial for the FL participants.
Our observations are intuitive.
Our code is available at https://github.com/MMorafah/FL-SC-NIID.
arXiv Detail & Related papers (2022-09-30T17:15:19Z) - FedDRL: Deep Reinforcement Learning-based Adaptive Aggregation for
Non-IID Data in Federated Learning [4.02923738318937]
Uneven distribution of local data across different edge devices (clients) results in slow model training and accuracy reduction in federated learning.
This work introduces a novel non-IID type encountered in real-world datasets, namely cluster-skew.
We propose FedDRL, a novel FL model that employs deep reinforcement learning to adaptively determine each client's impact factor.
arXiv Detail & Related papers (2022-08-04T04:24:16Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Speeding up Heterogeneous Federated Learning with Sequentially Trained
Superclients [19.496278017418113]
Federated Learning (FL) allows training machine learning models in privacy-constrained scenarios by enabling the cooperation of edge devices without requiring local data sharing.
This approach raises several challenges due to the different statistical distribution of the local datasets and the clients' computational heterogeneity.
We propose FedSeq, a novel framework leveraging the sequential training of subgroups of heterogeneous clients, i.e. superclients, to emulate the centralized paradigm in a privacy-compliant way.
arXiv Detail & Related papers (2022-01-26T12:33:23Z) - FedSLD: Federated Learning with Shared Label Distribution for Medical
Image Classification [6.0088002781256185]
We propose Federated Learning with Shared Label Distribution (FedSLD) for classification tasks.
FedSLD adjusts the contribution of each data sample to the local objective during optimization given knowledge of the distribution.
Our results show that FedSLD achieves better convergence performance than the compared leading FL optimization algorithms.
arXiv Detail & Related papers (2021-10-15T21:38:25Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.