FedSLD: Federated Learning with Shared Label Distribution for Medical
Image Classification
- URL: http://arxiv.org/abs/2110.08378v1
- Date: Fri, 15 Oct 2021 21:38:25 GMT
- Title: FedSLD: Federated Learning with Shared Label Distribution for Medical
Image Classification
- Authors: Jun Luo, Shandong Wu
- Abstract summary: We propose Federated Learning with Shared Label Distribution (FedSLD) for classification tasks.
FedSLD adjusts the contribution of each data sample to the local objective during optimization given knowledge of the distribution.
Our results show that FedSLD achieves better convergence performance than the compared leading FL optimization algorithms.
- Score: 6.0088002781256185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning in medical research, by nature, needs careful attention on
obeying the regulations of data privacy, making it difficult to train a machine
learning model over gathered data from different medical centers. Failure of
leveraging data of the same kind may result in poor generalizability for the
trained model. Federated learning (FL) enables collaboratively training a joint
model while keeping the data decentralized for multiple medical centers.
However, federated optimizations often suffer from the heterogeneity of the
data distribution across medical centers. In this work, we propose Federated
Learning with Shared Label Distribution (FedSLD) for classification tasks, a
method that assumes knowledge of the label distributions for all the
participating clients in the federation. FedSLD adjusts the contribution of
each data sample to the local objective during optimization given knowledge of
the distribution, mitigating the instability brought by data heterogeneity
across all clients. We conduct extensive experiments on four publicly available
image datasets with different types of non-IID data distributions. Our results
show that FedSLD achieves better convergence performance than the compared
leading FL optimization algorithms, increasing the test accuracy by up to 5.50
percentage points.
Related papers
- Continuous Contrastive Learning for Long-Tailed Semi-Supervised Recognition [50.61991746981703]
Current state-of-the-art LTSSL approaches rely on high-quality pseudo-labels for large-scale unlabeled data.
This paper introduces a novel probabilistic framework that unifies various recent proposals in long-tail learning.
We introduce a continuous contrastive learning method, CCL, extending our framework to unlabeled data using reliable and smoothed pseudo-labels.
arXiv Detail & Related papers (2024-10-08T15:06:10Z) - Federated Impression for Learning with Distributed Heterogeneous Data [19.50235109938016]
Federated learning (FL) provides a paradigm that can learn from distributed datasets across clients without requiring them to share data.
In FL, sub-optimal convergence is common among data from different health centers due to the variety in data collection protocols and patient demographics across centers.
We propose FedImpres which alleviates catastrophic forgetting by restoring synthetic data that represents the global information as federated impression.
arXiv Detail & Related papers (2024-09-11T15:37:52Z) - Investigation of Federated Learning Algorithms for Retinal Optical
Coherence Tomography Image Classification with Statistical Heterogeneity [6.318288071829899]
We investigate the effectiveness of FedAvg and FedProx to train an OCT image classification model in a decentralized fashion.
We partitioned a publicly available OCT dataset across multiple clients under IID and Non-IID settings and conducted local training on the subsets for each client.
arXiv Detail & Related papers (2024-02-15T15:58:42Z) - Class-Balancing Diffusion Models [57.38599989220613]
Class-Balancing Diffusion Models (CBDM) are trained with a distribution adjustment regularizer as a solution.
Our method benchmarked the generation results on CIFAR100/CIFAR100LT dataset and shows outstanding performance on the downstream recognition task.
arXiv Detail & Related papers (2023-04-30T20:00:14Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
We show that not only the issue of data heterogeneity in current setups is not necessarily a problem but also in fact it can be beneficial for the FL participants.
Our observations are intuitive.
Our code is available at https://github.com/MMorafah/FL-SC-NIID.
arXiv Detail & Related papers (2022-09-30T17:15:19Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Adaptive Personlization in Federated Learning for Highly Non-i.i.d. Data [37.667379000751325]
Federated learning (FL) is a distributed learning method that offers medical institutes the prospect of collaboration in a global model.
In this work, we investigate an adaptive hierarchical clustering method for FL to produce intermediate semi-global models.
Our experiments demonstrate significant performance gain in heterogeneous distribution compared to standard FL methods in classification accuracy.
arXiv Detail & Related papers (2022-07-07T17:25:04Z) - Label-Efficient Self-Supervised Federated Learning for Tackling Data
Heterogeneity in Medical Imaging [23.08596805950814]
We present a robust and label-efficient self-supervised FL framework for medical image analysis.
Specifically, we introduce a novel distributed self-supervised pre-training paradigm into the existing FL pipeline.
We show that our self-supervised FL algorithm generalizes well to out-of-distribution data and learns federated models more effectively in limited label scenarios.
arXiv Detail & Related papers (2022-05-17T18:33:43Z) - FEDIC: Federated Learning on Non-IID and Long-Tailed Data via Calibrated
Distillation [54.2658887073461]
Dealing with non-IID data is one of the most challenging problems for federated learning.
This paper studies the joint problem of non-IID and long-tailed data in federated learning and proposes a corresponding solution called Federated Ensemble Distillation with Imbalance (FEDIC)
FEDIC uses model ensemble to take advantage of the diversity of models trained on non-IID data.
arXiv Detail & Related papers (2022-04-30T06:17:36Z) - An Experimental Study of Data Heterogeneity in Federated Learning
Methods for Medical Imaging [8.984706828657814]
Federated learning enables multiple institutions to collaboratively train machine learning models on their local data in a privacy-preserving way.
We investigate the deleterious impact of a taxonomy of data heterogeneity regimes on federated learning methods, including quantity skew, label distribution skew, and imaging acquisition skew.
We present several mitigation strategies to overcome performance drops from data heterogeneity, including weighted average for data quantity skew, weighted loss and batch normalization averaging for label distribution skew.
arXiv Detail & Related papers (2021-07-18T05:47:48Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.