Class-Balanced and Reinforced Active Learning on Graphs
- URL: http://arxiv.org/abs/2402.10074v3
- Date: Tue, 7 May 2024 12:42:02 GMT
- Title: Class-Balanced and Reinforced Active Learning on Graphs
- Authors: Chengcheng Yu, Jiapeng Zhu, Xiang Li,
- Abstract summary: Graph neural networks (GNNs) have demonstrated significant success in various applications, such as node classification, link prediction, and graph classification.
Active learning for GNNs aims to query the valuable samples from the unlabeled data for annotation to maximize the GNNs' performance at a lower cost.
Most existing algorithms for reinforced active learning in GNNs may lead to a highly imbalanced class distribution, especially in highly skewed class scenarios.
We propose a novel class-balanced and reinforced active learning framework for GNNs, namely, GCBR. It learns an optimal policy to acquire class-balanced and informative nodes
- Score: 13.239043161351482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have demonstrated significant success in various applications, such as node classification, link prediction, and graph classification. Active learning for GNNs aims to query the valuable samples from the unlabeled data for annotation to maximize the GNNs' performance at a lower cost. However, most existing algorithms for reinforced active learning in GNNs may lead to a highly imbalanced class distribution, especially in highly skewed class scenarios. GNNs trained with class-imbalanced labeled data are susceptible to bias toward majority classes, and the lower performance of minority classes may lead to a decline in overall performance. To tackle this issue, we propose a novel class-balanced and reinforced active learning framework for GNNs, namely, GCBR. It learns an optimal policy to acquire class-balanced and informative nodes for annotation, maximizing the performance of GNNs trained with selected labeled nodes. GCBR designs class-balance-aware states, as well as a reward function that achieves trade-off between model performance and class balance. The reinforcement learning algorithm Advantage Actor-Critic (A2C) is employed to learn an optimal policy stably and efficiently. We further upgrade GCBR to GCBR++ by introducing a punishment mechanism to obtain a more class-balanced labeled set. Extensive experiments on multiple datasets demonstrate the effectiveness of the proposed approaches, achieving superior performance over state-of-the-art baselines.
Related papers
- Language Models are Graph Learners [70.14063765424012]
Language Models (LMs) are challenging the dominance of domain-specific models, including Graph Neural Networks (GNNs) and Graph Transformers (GTs)
We propose a novel approach that empowers off-the-shelf LMs to achieve performance comparable to state-of-the-art GNNs on node classification tasks.
arXiv Detail & Related papers (2024-10-03T08:27:54Z) - Online GNN Evaluation Under Test-time Graph Distribution Shifts [92.4376834462224]
A new research problem, online GNN evaluation, aims to provide valuable insights into the well-trained GNNs's ability to generalize to real-world unlabeled graphs.
We develop an effective learning behavior discrepancy score, dubbed LeBeD, to estimate the test-time generalization errors of well-trained GNN models.
arXiv Detail & Related papers (2024-03-15T01:28:08Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
We study a new problem, GNN model evaluation, that aims to assess the performance of a specific GNN model trained on labeled and observed graphs.
We propose a two-stage GNN model evaluation framework, including (1) DiscGraph set construction and (2) GNNEvaluator training and inference.
Under the effective training supervision from the DiscGraph set, GNNEvaluator learns to precisely estimate node classification accuracy of the to-be-evaluated GNN model.
arXiv Detail & Related papers (2023-10-23T05:51:59Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - Analyzing the Effect of Sampling in GNNs on Individual Fairness [79.28449844690566]
Graph neural network (GNN) based methods have saturated the field of recommender systems.
We extend an existing method for promoting individual fairness on graphs to support mini-batch, or sub-sample based, training of a GNN.
We show that mini-batch training facilitate individual fairness promotion by allowing for local nuance to guide the process of fairness promotion in representation learning.
arXiv Detail & Related papers (2022-09-08T16:20:25Z) - Distance-wise Prototypical Graph Neural Network in Node Imbalance
Classification [9.755229198654922]
We propose a novel Distance-wise Prototypical Graph Neural Network (DPGNN) for imbalanced graph data.
The proposed DPGNN almost always significantly outperforms all other baselines, which demonstrates its effectiveness in imbalanced node classification.
arXiv Detail & Related papers (2021-10-22T19:43:15Z) - Class Balancing GAN with a Classifier in the Loop [58.29090045399214]
We introduce a novel theoretically motivated Class Balancing regularizer for training GANs.
Our regularizer makes use of the knowledge from a pre-trained classifier to ensure balanced learning of all the classes in the dataset.
We demonstrate the utility of our regularizer in learning representations for long-tailed distributions via achieving better performance than existing approaches over multiple datasets.
arXiv Detail & Related papers (2021-06-17T11:41:30Z) - AdaGCN:Adaptive Boosting Algorithm for Graph Convolutional Networks on
Imbalanced Node Classification [10.72543417177307]
We propose an ensemble model called AdaGCN, which uses a Graph Convolutional Network (GCN) as the base estimator during adaptive boosting.
Our model also improves state-of-the-art baselines on all of the challenging node classification tasks we consider.
arXiv Detail & Related papers (2021-05-25T02:43:31Z) - Label Contrastive Coding based Graph Neural Network for Graph
Classification [9.80278570179994]
We propose the novel Label Contrastive Coding based Graph Neural Network (LCGNN) to utilize label information more effectively and comprehensively.
To power the contrastive learning, LCGNN introduces a dynamic label memory bank and a momentum updated encoder.
Our evaluations with eight benchmark graph datasets demonstrate that LCGNN can outperform state-of-the-art graph classification models.
arXiv Detail & Related papers (2021-01-14T07:45:55Z) - A Collective Learning Framework to Boost GNN Expressiveness [25.394456460032625]
We consider the task of inductive node classification using Graph Neural Networks (GNNs) in supervised and semi-supervised settings.
We propose a general collective learning approach to increase the representation power of any existing GNN.
We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy.
arXiv Detail & Related papers (2020-03-26T22:07:28Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
Graph neural networks (GNNs) have received much attention recently because of their excellent performance on graph-based tasks.
We propose self-enhanced GNN (SEG), which improves the quality of the input data using the outputs of existing GNN models.
SEG consistently improves the performance of well-known GNN models such as GCN, GAT and SGC across different datasets.
arXiv Detail & Related papers (2020-02-18T12:27:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.