A Collective Learning Framework to Boost GNN Expressiveness
- URL: http://arxiv.org/abs/2003.12169v2
- Date: Mon, 28 Sep 2020 20:42:07 GMT
- Title: A Collective Learning Framework to Boost GNN Expressiveness
- Authors: Mengyue Hang, Jennifer Neville, Bruno Ribeiro
- Abstract summary: We consider the task of inductive node classification using Graph Neural Networks (GNNs) in supervised and semi-supervised settings.
We propose a general collective learning approach to increase the representation power of any existing GNN.
We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy.
- Score: 25.394456460032625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have recently been used for node and graph
classification tasks with great success, but GNNs model dependencies among the
attributes of nearby neighboring nodes rather than dependencies among observed
node labels. In this work, we consider the task of inductive node
classification using GNNs in supervised and semi-supervised settings, with the
goal of incorporating label dependencies. Because current GNNs are not
universal (i.e., most-expressive) graph representations, we propose a general
collective learning approach to increase the representation power of any
existing GNN. Our framework combines ideas from collective classification with
self-supervised learning, and uses a Monte Carlo approach to sampling
embeddings for inductive learning across graphs. We evaluate performance on
five real-world network datasets and demonstrate consistent, significant
improvement in node classification accuracy, for a variety of state-of-the-art
GNNs.
Related papers
- A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
Graph Neural Networks (GNNs) combine information from adjacent nodes by successive applications of graph convolutions.
We study the generalization gaps of GNNs on both node-level and graph-level tasks.
We show that the generalization gaps decrease with the number of nodes in the training graphs.
arXiv Detail & Related papers (2024-06-07T19:25:02Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
We study a new problem, GNN model evaluation, that aims to assess the performance of a specific GNN model trained on labeled and observed graphs.
We propose a two-stage GNN model evaluation framework, including (1) DiscGraph set construction and (2) GNNEvaluator training and inference.
Under the effective training supervision from the DiscGraph set, GNNEvaluator learns to precisely estimate node classification accuracy of the to-be-evaluated GNN model.
arXiv Detail & Related papers (2023-10-23T05:51:59Z) - How Expressive are Graph Neural Networks in Recommendation? [17.31401354442106]
Graph Neural Networks (GNNs) have demonstrated superior performance on various graph learning tasks, including recommendation.
Recent research has explored the expressiveness of GNNs in general, demonstrating that message passing GNNs are at most as powerful as the Weisfeiler-Lehman test.
We propose the topological closeness metric to evaluate GNNs' ability to capture the structural distance between nodes.
arXiv Detail & Related papers (2023-08-22T02:17:34Z) - Deep Ensembles for Graphs with Higher-order Dependencies [13.164412455321907]
Graph neural networks (GNNs) continue to achieve state-of-the-art performance on many graph learning tasks.
We show that the tendency of traditional graph representations to underfit each node's neighborhood causes existing GNNs to generalize poorly.
We propose a novel Deep Graph Ensemble (DGE) which captures neighborhood variance by training an ensemble of GNNs on different neighborhood subspaces of the same node.
arXiv Detail & Related papers (2022-05-27T14:01:08Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
This paper introduces a graph generative process to model how the observed edges are generated by aggregating the node interactions over a set of overlapping node communities.
We partition each edge into the summation of multiple community-specific weighted edges and use them to define community-specific GNNs.
A variational inference framework is proposed to jointly learn a GNN based inference network that partitions the edges into different communities, these community-specific GNNs, and a GNN based predictor that combines community-specific GNNs for the end classification task.
arXiv Detail & Related papers (2022-02-07T14:37:50Z) - Label-Consistency based Graph Neural Networks for Semi-supervised Node
Classification [47.753422069515366]
Graph neural networks (GNNs) achieve remarkable success in graph-based semi-supervised node classification.
In this paper, we propose label-consistency based graph neural network(LC-GNN), leveraging node pairs unconnected but with the same labels to enlarge the receptive field of nodes in GNNs.
Experiments on benchmark datasets demonstrate the proposed LC-GNN outperforms traditional GNNs in graph-based semi-supervised node classification.
arXiv Detail & Related papers (2020-07-27T11:17:46Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
Graph neural networks (GNNs) have received much attention recently because of their excellent performance on graph-based tasks.
We propose self-enhanced GNN (SEG), which improves the quality of the input data using the outputs of existing GNN models.
SEG consistently improves the performance of well-known GNN models such as GCN, GAT and SGC across different datasets.
arXiv Detail & Related papers (2020-02-18T12:27:16Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
Graph Neural Network (GNN) is a powerful model to learn representations and make predictions on graph data.
We propose a new graph convolution operator, which augments the weighted sum with pairwise interactions of the representations of neighbor nodes.
We term this framework as Bilinear Graph Neural Network (BGNN), which improves GNN representation ability with bilinear interactions between neighbor nodes.
arXiv Detail & Related papers (2020-02-10T06:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.