An optically pumped magnetic gradiometer for the detection of human
biomagnetism
- URL: http://arxiv.org/abs/2402.10113v1
- Date: Thu, 15 Feb 2024 17:08:49 GMT
- Title: An optically pumped magnetic gradiometer for the detection of human
biomagnetism
- Authors: Harry Cook, Yulia Bezsudnova, Lari M. Koponen, Ole Jensen, Giovanni
Barontini, Anna U. Kowalczyk
- Abstract summary: We show that our sensor can reach a gradiometric sensitivity of 18 $textfT/textcm/sqrttextHz$ and can reject common mode homogeneous magnetic field noise with up to 30 dB attenuation.
In particular, we are able to record the auditory evoked response of the human brain, and to perform real-time magnetocardiography in the presence of external magnetic field disturbances.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We realise an intrinsic optically pumped magnetic gradiometer based on
non-linear magneto-optical rotation. We show that our sensor can reach a
gradiometric sensitivity of 18 $\text{fT}/\text{cm}/\sqrt{\text{Hz}}$ and can
reject common mode homogeneous magnetic field noise with up to 30 dB
attenuation. We demonstrate that our magnetic field gradiometer is sufficiently
sensitive and resilient to be employed in biomagnetic applications. In
particular, we are able to record the auditory evoked response of the human
brain, and to perform real-time magnetocardiography in the presence of external
magnetic field disturbances. Our gradiometer provides complementary
capabilities in human biomagnetic sensing to optically pumped magnetometers,
and opens new avenues in the detection of human biomagnetism.
Related papers
- Zero-field optical magnetometer based on spin-alignment [0.2407976495888858]
This research focuses on utilizing a spin-aligned atomic ensemble for magnetometry at zero-field.
The sensitivity and bandwidth of the magnetometer are characterized based on the detected polarization rotation signal.
Lastly, the practical utility of the magnetometer for medical applications is demonstrated by successfully detecting a synthetic cardiac signal.
arXiv Detail & Related papers (2023-08-23T16:15:10Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - Small animal biomagnetism applications [0.0]
We review the topic of biomagnetic recordings on animal models using optically pumped magnetometers.
We present our experiments on detecting nerve impulses in the frog sciatic nerve and the heart beat in an isolated guinea pig heart.
arXiv Detail & Related papers (2022-12-02T12:22:43Z) - Improving Sensitivity of an Amplitude-Modulated Magneto-Optical Atomic
Magnetometer using Squeezed Light [10.396267889929488]
A squeezed probe optical field can improve the sensitivity of the magnetic field measurements based on nonlinear magneto-optical rotation.
An independent pump field, amplitude-modulated at the Larmor frequency of the bias magnetic field, allows us to extend the range of most sensitive NMOR measurements to sub-Gauss magnetic fields.
arXiv Detail & Related papers (2022-07-26T15:15:44Z) - DC Quantum Magnetometry Below the Ramsey Limit [68.8204255655161]
We demonstrate quantum sensing of dc magnetic fields that exceeds the sensitivity of conventional $Tast$-limited dc magnetometry by more than an order of magnitude.
We used nitrogen-vacancy centers in a diamond rotating at periods comparable to the spin coherence time, and characterize the dependence of magnetic sensitivity on measurement time and rotation speed.
arXiv Detail & Related papers (2022-03-27T07:32:53Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Single-beam all-optical non-zero field magnetometric sensor for
magnetoencephalography applications [0.0]
We present a method for measuring the magnetic field that allows hyperfine and Zeeman optical pumping, excitation and detection of magnetic resonance by means of a single laser beam with time-modulated ellipticity.
arXiv Detail & Related papers (2021-03-01T12:52:48Z) - Ferromagnetic Gyroscopes for Tests of Fundamental Physics [49.853792068336034]
A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will precess under the action of an external torque.
We model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization.
arXiv Detail & Related papers (2020-10-17T07:13:50Z) - Detection of biological signals from a live mammalian muscle using a
diamond quantum sensor [41.91891973513696]
We show an alternative technique for detecting magnetic fields generated by the current from action potentials in living tissue using nitrogen vacancy centres in diamond.
We show these measurements can be performed in an ordinary, unshielded lab environment and that the signal can be easily recovered by digital signal processing techniques.
arXiv Detail & Related papers (2020-08-03T16:40:44Z) - Optimisation of a diamond nitrogen vacancy centre magnetometer for
sensing of biological signals [44.62475518267084]
We present advances in biomagnetometry using nitrogen vacancy centres in diamond.
We show magnetic field sensitivity of approximately 100 pT/$sqrtHz$ in the DC/low frequency range using a setup designed for biological measurements.
arXiv Detail & Related papers (2020-04-05T18:44:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.