論文の概要: DeepSRGM -- Sequence Classification and Ranking in Indian Classical
Music with Deep Learning
- arxiv url: http://arxiv.org/abs/2402.10168v1
- Date: Thu, 15 Feb 2024 18:11:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 14:22:41.219977
- Title: DeepSRGM -- Sequence Classification and Ranking in Indian Classical
Music with Deep Learning
- Title(参考訳): deepsrgm --深層学習によるインド古典音楽のシーケンス分類とランク付け
- Authors: Sathwik Tejaswi Madhusudhan and Girish Chowdhary
- Abstract要約: ラガは作曲と即興のメロディックな枠組みである。
インド古典音楽において,ラーガ認識は重要な音楽情報検索課題である。
本稿では,ラーガ認識に対する深層学習に基づくアプローチを提案する。
- 参考スコア(独自算出の注目度): 7.140656816182373
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A vital aspect of Indian Classical Music (ICM) is Raga, which serves as a
melodic framework for compositions and improvisations alike. Raga Recognition
is an important music information retrieval task in ICM as it can aid numerous
downstream applications ranging from music recommendations to organizing huge
music collections. In this work, we propose a deep learning based approach to
Raga recognition. Our approach employs efficient pre possessing and learns
temporal sequences in music data using Long Short Term Memory based Recurrent
Neural Networks (LSTM-RNN). We train and test the network on smaller sequences
sampled from the original audio while the final inference is performed on the
audio as a whole. Our method achieves an accuracy of 88.1% and 97 % during
inference on the Comp Music Carnatic dataset and its 10 Raga subset
respectively making it the state-of-the-art for the Raga recognition task. Our
approach also enables sequence ranking which aids us in retrieving melodic
patterns from a given music data base that are closely related to the presented
query sequence.
- Abstract(参考訳): インド古典音楽(ICM)の重要な側面はラガであり、作曲と即興のメロディックな枠組みとして機能している。
raga認識は、音楽レコメンデーションから巨大な音楽コレクションの整理まで、多くの下流アプリケーションを支援するため、icmにおいて重要な音楽情報検索タスクである。
本研究では,ラーガ認識に対する深層学習に基づくアプローチを提案する。
提案手法では,Long Short Term Memory based Recurrent Neural Networks (LSTM-RNN) を用いて,音楽データの時間的シーケンスを効率的に保持し,学習する。
最終的な推論が音声全体で行われる間、元の音声からサンプリングされた小さなシーケンスでネットワークを訓練し、テストする。
提案手法は,Comp Music Carnatic データセットと 10 Raga サブセットの推測において,88.1% と 97 % の精度を達成し,Raga 認識タスクの最先端化を実現している。
提案手法では,提案したクエリシーケンスと密接に関連している音楽データベースからメロディックパターンの検索を支援するシーケンスランキングも実現している。
関連論文リスト
- Carnatic Raga Identification System using Rigorous Time-Delay Neural Network [0.0]
大規模な機械学習に基づくRaga識別は、カルナティック音楽の背後にある計算的側面において、いまだに非自明な問題である。
本稿では,離散フーリエ変換と三角フィルタを用いて音符のカスタムビンを生成するステップの組み合わせを用いて,入力音を解析する。
このプログラムの目的は、より広い範囲のオーディオクリップを、よりシュルーティス、ラガ、よりバックグラウンドノイズで効果的かつ効率的にラベル付けできるようにすることである。
論文 参考訳(メタデータ) (2024-05-25T01:31:58Z) - MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
音楽の事前学習におけるLarge Language Models (LLM) の適用について検討する。
生成過程の異なるトラックからの不整合対策に関連する課題に対処するために,SMT-ABC Notation(Synchronized Multi-Track ABC Notation)を提案する。
私たちのコントリビューションには、最大8192個のトークンを処理可能な一連のモデルが含まれており、トレーニングセットの象徴的な音楽データの90%をカバーしています。
論文 参考訳(メタデータ) (2024-04-09T15:35:52Z) - N-Gram Unsupervised Compoundation and Feature Injection for Better
Symbolic Music Understanding [27.554853901252084]
音楽系列は隣接要素間の強い相関関係を示し、自然言語処理(NLP)によるN-gram技術の主要な候補となる。
本稿では,N-gramアプローチを利用したシンボリック・ミュージック・シーケンス理解のための新しい手法NG-Midiformerを提案する。
論文 参考訳(メタデータ) (2023-12-13T06:08:37Z) - Self-Supervised Contrastive Learning for Robust Audio-Sheet Music
Retrieval Systems [3.997809845676912]
自己指導型コントラスト学習は、実際の音楽コンテンツからの注釈付きデータの不足を軽減することができることを示す。
クロスモーダルなピース識別の高レベルなタスクにスニペットを埋め込む。
本研究では,実際の音楽データが存在する場合,検索品質が30%から100%に向上することが観察された。
論文 参考訳(メタデータ) (2023-09-21T14:54:48Z) - A Dataset for Greek Traditional and Folk Music: Lyra [69.07390994897443]
本稿では,80時間程度で要約された1570曲を含むギリシャの伝統音楽と民俗音楽のデータセットについて述べる。
このデータセットにはYouTubeのタイムスタンプ付きリンクが組み込まれており、オーディオやビデオの検索や、インスツルメンテーション、地理、ジャンルに関する豊富なメタデータ情報が含まれている。
論文 参考訳(メタデータ) (2022-11-21T14:15:43Z) - Multi-task Learning with Metadata for Music Mood Classification [0.0]
ムード認識は音楽情報学において重要な問題であり、音楽発見とレコメンデーションに重要な応用がある。
マルチタスク学習手法を提案する。この手法では、共有されたモデルが、気分やメタデータの予測タスクに対して同時に訓練される。
我々の手法を既存の最先端の畳み込みニューラルネットワークに適用することにより、その性能を継続的に改善する。
論文 参考訳(メタデータ) (2021-10-10T11:36:34Z) - Unsupervised Learning of Deep Features for Music Segmentation [8.528384027684192]
音楽セグメンテーション(英: Music segmentation)は、音楽セグメンテーションの境界を識別し、ラベル付けする問題である。
様々な楽曲セグメンテーションアルゴリズムの性能は、音声を表現するために選択された音声機能に依存している。
本研究では,畳み込みニューラルネットワーク(CNN)を用いたディープ・フィーチャー・埋め込みの教師なしトレーニングを音楽セグメンテーションのために検討した。
論文 参考訳(メタデータ) (2021-08-30T01:55:44Z) - MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training [97.91071692716406]
シンボリック・ミュージックの理解(シンボリック・ミュージックの理解)とは、シンボリック・データから音楽を理解することを指す。
MusicBERTは、音楽理解のための大規模な事前訓練モデルである。
論文 参考訳(メタデータ) (2021-06-10T10:13:05Z) - Sequence Generation using Deep Recurrent Networks and Embeddings: A
study case in music [69.2737664640826]
本稿では,異なる種類の記憶機構(メモリセル)について評価し,音楽合成分野におけるその性能について検討する。
提案したアーキテクチャの性能を自動評価するために,定量的な測定値のセットが提示される。
論文 参考訳(メタデータ) (2020-12-02T14:19:19Z) - dMelodies: A Music Dataset for Disentanglement Learning [70.90415511736089]
我々は、研究者が様々な領域でアルゴリズムの有効性を実証するのに役立つ新しいシンボリック・ミュージック・データセットを提案する。
これはまた、音楽用に特別に設計されたアルゴリズムを評価する手段を提供する。
データセットは、遠絡学習のためのディープネットワークのトレーニングとテストに十分な大きさ(約13万データポイント)である。
論文 参考訳(メタデータ) (2020-07-29T19:20:07Z) - Deep Learning for MIR Tutorial [68.8204255655161]
このチュートリアルは、広範囲にわたるMIR関連ディープラーニングアプローチをカバーしている。
textbfConvolutional Neural Networksは現在、ディープラーニングベースのオーディオ検索のためのデファクトスタンダードである。
textbfSiamese Networksは音楽類似性検索に特有な音声表現と距離関数の学習に有効であることが示されている。
論文 参考訳(メタデータ) (2020-01-15T12:23:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。