Unlocking Structure Measuring: Introducing PDD, an Automatic Metric for Positional Discourse Coherence
- URL: http://arxiv.org/abs/2402.10175v2
- Date: Tue, 2 Apr 2024 21:51:36 GMT
- Title: Unlocking Structure Measuring: Introducing PDD, an Automatic Metric for Positional Discourse Coherence
- Authors: Yinhong Liu, Yixuan Su, Ehsan Shareghi, Nigel Collier,
- Abstract summary: We present a novel metric designed to quantify the discourse divergence between two long-form articles.
Our metric aligns more closely with human preferences and GPT-4 coherence evaluation, outperforming existing evaluation methods.
- Score: 39.065349875944634
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent large language models (LLMs) have shown remarkable performance in aligning generated text with user intentions across various tasks. When it comes to long-form text generation, there has been a growing interest in generation from a discourse coherence perspective. However, existing lexical or semantic metrics such as BLEU, ROUGE, BertScore cannot effectively capture the discourse coherence. The development of discourse-specific automatic evaluation methods for assessing the output of LLMs warrants greater focus and exploration. In this paper, we present a novel automatic metric designed to quantify the discourse divergence between two long-form articles. Extensive experiments on three datasets from representative domains demonstrate that our metric aligns more closely with human preferences and GPT-4 coherence evaluation, outperforming existing evaluation methods.
Related papers
- Evaluation of Instruction-Following Ability for Large Language Models on Story-Ending Generation [2.4889060833127665]
In this paper, we focus on evaluating the instruction-following ability of Large Language Models (LLMs) in the context of story-ending generation.
We propose an automatic evaluation pipeline that utilizes a machine reading comprehension (MRC) model to determine whether the generated story-ending reflects instruction.
arXiv Detail & Related papers (2024-06-24T06:53:36Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
We introduce a novel evaluation framework for Large Language Models (LLMs) such as textscLlama-2 and textscMistral.
This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora.
arXiv Detail & Related papers (2024-02-16T13:53:26Z) - PROXYQA: An Alternative Framework for Evaluating Long-Form Text Generation with Large Language Models [72.57329554067195]
ProxyQA is an innovative framework dedicated to assessing longtext generation.
It comprises in-depth human-curated meta-questions spanning various domains, each accompanied by specific proxy-questions with pre-annotated answers.
It assesses the generated content's quality through the evaluator's accuracy in addressing the proxy-questions.
arXiv Detail & Related papers (2024-01-26T18:12:25Z) - Simple LLM Prompting is State-of-the-Art for Robust and Multilingual
Dialogue Evaluation [7.767020408405403]
We propose a novel framework that takes advantage of the strengths of current evaluation models with the newly-established paradigm of prompting Large Language Models (LLMs)
Empirical results show our framework achieves state of the art results in terms of mean Spearman correlation scores across several benchmarks.
arXiv Detail & Related papers (2023-08-31T15:19:28Z) - MetricPrompt: Prompting Model as a Relevance Metric for Few-shot Text
Classification [65.51149771074944]
MetricPrompt eases verbalizer design difficulty by reformulating few-shot text classification task into text pair relevance estimation task.
We conduct experiments on three widely used text classification datasets across four few-shot settings.
Results show that MetricPrompt outperforms manual verbalizer and other automatic verbalizer design methods across all few-shot settings.
arXiv Detail & Related papers (2023-06-15T06:51:35Z) - Pointwise Mutual Information Based Metric and Decoding Strategy for
Faithful Generation in Document Grounded Dialogs [17.691689809414843]
Existing metrics measure the degree of similarity between the generated response and the document's content.
We propose a new metric that utilizes (Conditional) Point-wise Mutual Information (PMI) between the generated response and the source document.
PMI quantifies the extent to which the document influences the generated response.
We build upon this idea to create a new decoding technique that incorporates PMI into the response generation process to predict more faithful responses.
arXiv Detail & Related papers (2023-05-20T13:34:34Z) - Large Language Models are Diverse Role-Players for Summarization
Evaluation [82.31575622685902]
A document summary's quality can be assessed by human annotators on various criteria, both objective ones like grammar and correctness, and subjective ones like informativeness, succinctness, and appeal.
Most of the automatic evaluation methods like BLUE/ROUGE may be not able to adequately capture the above dimensions.
We propose a new evaluation framework based on LLMs, which provides a comprehensive evaluation framework by comparing generated text and reference text from both objective and subjective aspects.
arXiv Detail & Related papers (2023-03-27T10:40:59Z) - TRUE: Re-evaluating Factual Consistency Evaluation [29.888885917330327]
We introduce TRUE: a comprehensive study of factual consistency metrics on a standardized collection of existing texts from diverse tasks.
Our standardization enables an example-level meta-evaluation protocol that is more actionable and interpretable than previously reported correlations.
Across diverse state-of-the-art metrics and 11 datasets we find that large-scale NLI and question generation-and-answering-based approaches achieve strong and complementary results.
arXiv Detail & Related papers (2022-04-11T10:14:35Z) - Learning an Unreferenced Metric for Online Dialogue Evaluation [53.38078951628143]
We propose an unreferenced automated evaluation metric that uses large pre-trained language models to extract latent representations of utterances.
We show that our model achieves higher correlation with human annotations in an online setting, while not requiring true responses for comparison during inference.
arXiv Detail & Related papers (2020-05-01T20:01:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.