Large Scale Constrained Clustering With Reinforcement Learning
- URL: http://arxiv.org/abs/2402.10177v1
- Date: Thu, 15 Feb 2024 18:27:18 GMT
- Title: Large Scale Constrained Clustering With Reinforcement Learning
- Authors: Benedikt Schesch, Marco Caserta
- Abstract summary: Given a network, allocating resources at clusters level, rather than at each node, enhances efficiency in resource allocation and usage.
We propose an approach to solve this constrained clustering problem via reinforcement learning.
In the results section, we show that our algorithm finds near optimal solutions, even for large scale instances.
- Score: 1.3597551064547502
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given a network, allocating resources at clusters level, rather than at each
node, enhances efficiency in resource allocation and usage. In this paper, we
study the problem of finding fully connected disjoint clusters to minimize the
intra-cluster distances and maximize the number of nodes assigned to the
clusters, while also ensuring that no two nodes within a cluster exceed a
threshold distance. While the problem can easily be formulated using a binary
linear model, traditional combinatorial optimization solvers struggle when
dealing with large-scale instances. We propose an approach to solve this
constrained clustering problem via reinforcement learning. Our method involves
training an agent to generate both feasible and (near) optimal solutions. The
agent learns problem-specific heuristics, tailored to the instances encountered
in this task. In the results section, we show that our algorithm finds near
optimal solutions, even for large scale instances.
Related papers
- Stable Cluster Discrimination for Deep Clustering [7.175082696240088]
Deep clustering can optimize representations of instances (i.e., representation learning) and explore the inherent data distribution.
The coupled objective implies a trivial solution that all instances collapse to the uniform features.
In this work, we first show that the prevalent discrimination task in supervised learning is unstable for one-stage clustering.
A novel stable cluster discrimination (SeCu) task is proposed and a new hardness-aware clustering criterion can be obtained accordingly.
arXiv Detail & Related papers (2023-11-24T06:43:26Z) - Gap-Free Clustering: Sensitivity and Robustness of SDP [6.996002801232415]
We study graph clustering in the Block Model (SBM) in the presence of both large clusters and small, unrecoverable clusters.
Previous convex relaxation approaches achieving exact recovery do not allow any small clusters of size $o(sqrtn)$, or require a size gap between the smallest recovered cluster and the largest non-recovered cluster.
We provide an algorithm based on semidefinite programming (SDP) which removes these requirements and provably recovers large clusters regardless of the remaining cluster sizes.
arXiv Detail & Related papers (2023-08-29T21:27:21Z) - Federated K-Means Clustering via Dual Decomposition-based Distributed
Optimization [0.0]
This paper shows how dual decomposition can be applied for distributed training of $ K $-means clustering problems.
The training can be performed in a distributed manner by splitting the data across different nodes and linking these nodes through consensus constraints.
arXiv Detail & Related papers (2023-07-25T05:34:50Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
Online deep clustering refers to the joint use of a feature extraction network and a clustering model to assign cluster labels to each new data point or batch as it is processed.
While faster and more versatile than offline methods, online clustering can easily reach the collapsed solution where the encoder maps all inputs to the same point and all are put into a single cluster.
We propose a method that does not require data augmentation, and that, differently from existing methods, regularizes the hard assignments.
arXiv Detail & Related papers (2023-03-29T08:23:26Z) - Neural Capacitated Clustering [6.155158115218501]
We propose a new method for the Capacitated Clustering Problem (CCP) that learns a neural network to predict the assignment probabilities of points to cluster centers.
In our experiments on artificial data and two real world datasets our approach outperforms several state-of-the-art mathematical and solvers from the literature.
arXiv Detail & Related papers (2023-02-10T09:33:44Z) - Near-Optimal Correlation Clustering with Privacy [37.94795032297396]
Correlation clustering is a central problem in unsupervised learning.
In this paper, we introduce a simple and computationally efficient algorithm for the correlation clustering problem with provable privacy guarantees.
arXiv Detail & Related papers (2022-03-02T22:30:19Z) - Meta Clustering Learning for Large-scale Unsupervised Person
Re-identification [124.54749810371986]
We propose a "small data for big task" paradigm dubbed Meta Clustering Learning (MCL)
MCL only pseudo-labels a subset of the entire unlabeled data via clustering to save computing for the first-phase training.
Our method significantly saves computational cost while achieving a comparable or even better performance compared to prior works.
arXiv Detail & Related papers (2021-11-19T04:10:18Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - A Low Complexity Decentralized Neural Net with Centralized Equivalence
using Layer-wise Learning [49.15799302636519]
We design a low complexity decentralized learning algorithm to train a recently proposed large neural network in distributed processing nodes (workers)
In our setup, the training data is distributed among the workers but is not shared in the training process due to privacy and security concerns.
We show that it is possible to achieve equivalent learning performance as if the data is available in a single place.
arXiv Detail & Related papers (2020-09-29T13:08:12Z) - Local Graph Clustering with Network Lasso [90.66817876491052]
We study the statistical and computational properties of a network Lasso method for local graph clustering.
The clusters delivered by nLasso can be characterized elegantly via network flows between cluster boundary and seed nodes.
arXiv Detail & Related papers (2020-04-25T17:52:05Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
We propose a fully learnable clustering framework without requiring a large number of overlapped subgraphs.
Our method significantly improves clustering accuracy and thus performance of the recognition models trained on top, yet it is an order of magnitude more efficient than existing supervised methods.
arXiv Detail & Related papers (2020-04-01T13:39:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.