Signed Diverse Multiplex Networks: Clustering and Inference
- URL: http://arxiv.org/abs/2402.10242v2
- Date: Fri, 15 Mar 2024 15:22:50 GMT
- Title: Signed Diverse Multiplex Networks: Clustering and Inference
- Authors: Marianna Pensky,
- Abstract summary: The setting is extended to a multiplex version, where all layers have the same collection of nodes and follow the SGRDPG.
The paper fulfills two objectives. First, it shows that keeping signs of the edges in the process of network construction leads to a better precision of estimation and clustering.
Second, by employing novel algorithms, our paper ensures strongly consistent clustering of layers and high accuracy of subspace estimation.
- Score: 4.070200285321219
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paper introduces a Signed Generalized Random Dot Product Graph (SGRDPG) model, which is a variant of the Generalized Random Dot Product Graph (GRDPG), where, in addition, edges can be positive or negative. The setting is extended to a multiplex version, where all layers have the same collection of nodes and follow the SGRDPG. The only common feature of the layers of the network is that they can be partitioned into groups with common subspace structures, while otherwise matrices of connection probabilities can be all different. The setting above is extremely flexible and includes a variety of existing multiplex network models as its particular cases. The paper fulfills two objectives. First, it shows that keeping signs of the edges in the process of network construction leads to a better precision of estimation and clustering and, hence, is beneficial for tackling real world problems such as, for example, analysis of brain networks. Second, by employing novel algorithms, our paper ensures strongly consistent clustering of layers and high accuracy of subspace estimation. In addition to theoretical guarantees, both of those features are demonstrated using numerical simulations and a real data example.
Related papers
- The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs [59.03660013787925]
We introduce the Heterophily Snowflake Hypothesis and provide an effective solution to guide and facilitate research on heterophilic graphs.
Our observations show that our framework acts as a versatile operator for diverse tasks.
It can be integrated into various GNN frameworks, boosting performance in-depth and offering an explainable approach to choosing the optimal network depth.
arXiv Detail & Related papers (2024-06-18T12:16:00Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
We show that gradient flow converges in direction when labels are determined by the sign of a target network with $r$ neurons.
Our result may already hold for mild over- parameterization, where the width is $tildemathcalO(r)$ and independent of the sample size.
arXiv Detail & Related papers (2022-05-18T16:57:10Z) - Graph Spectral Embedding using the Geodesic Betweeness Centrality [76.27138343125985]
We introduce the Graph Sylvester Embedding (GSE), an unsupervised graph representation of local similarity, connectivity, and global structure.
GSE uses the solution of the Sylvester equation to capture both network structure and neighborhood proximity in a single representation.
arXiv Detail & Related papers (2022-05-07T04:11:23Z) - Geometric Graph Representation Learning via Maximizing Rate Reduction [73.6044873825311]
Learning node representations benefits various downstream tasks in graph analysis such as community detection and node classification.
We propose Geometric Graph Representation Learning (G2R) to learn node representations in an unsupervised manner.
G2R maps nodes in distinct groups into different subspaces, while each subspace is compact and different subspaces are dispersed.
arXiv Detail & Related papers (2022-02-13T07:46:24Z) - Multiplex Bipartite Network Embedding using Dual Hypergraph
Convolutional Networks [16.62391694987056]
We develop an unsupervised Dual HyperGraph Convolutional Network (DualHGCN) model scalably transforms the multiplex bipartite network into two sets of homogeneous hypergraphs.
We benchmark DualHGCN using four real-world datasets on link prediction and node classification tasks.
arXiv Detail & Related papers (2021-02-12T07:20:36Z) - Global and Individualized Community Detection in Inhomogeneous
Multilayer Networks [14.191073951237772]
In network applications, it has become increasingly common to obtain datasets in the form of multiple networks observed on the same set of subjects.
Such datasets can be modeled by multilayer networks where each layer is a separate network itself while different layers are associated and share some common information.
The present paper studies community detection in a stylized yet informative inhomogeneous multilayer network model.
arXiv Detail & Related papers (2020-12-02T02:42:52Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
We propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net.
To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network.
Our network can obtain state-of-the-art performance for representation learning and clustering.
arXiv Detail & Related papers (2020-09-08T13:10:21Z) - Unsupervised Differentiable Multi-aspect Network Embedding [52.981277420394846]
We propose a novel end-to-end framework for multi-aspect network embedding, called asp2vec.
Our proposed framework can be readily extended to heterogeneous networks.
arXiv Detail & Related papers (2020-06-07T19:26:20Z) - Non-Euclidean Universal Approximation [4.18804572788063]
Modifications to a neural network's input and output layers are often required to accommodate the specificities of most practical learning tasks.
We present general conditions describing feature and readout maps that preserve an architecture's ability to approximate any continuous functions uniformly on compacts.
arXiv Detail & Related papers (2020-06-03T15:38:57Z) - Consistency of Spectral Clustering on Hierarchical Stochastic Block
Models [5.983753938303726]
We study the hierarchy of communities in real-world networks under a generic block model.
We prove the strong consistency of this method under a wide range of model parameters.
Unlike most of existing work, our theory covers multiscale networks where the connection probabilities may differ by orders of magnitude.
arXiv Detail & Related papers (2020-04-30T01:08:59Z) - Hierarchical clustering of bipartite data sets based on the statistical
significance of coincidences [0.0]
We provide an hierarchical clustering algorithm based on a dissimilarity between entities that quantifies the probability that the features shared by two entities is due to mere chance.
The algorithm performance is $O(n2)$ when applied to a set of n entities, and its outcome is a dendrogram exhibiting the connections of those entities.
arXiv Detail & Related papers (2020-04-27T23:30:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.