BrainWave: A Brain Signal Foundation Model for Clinical Applications
- URL: http://arxiv.org/abs/2402.10251v5
- Date: Thu, 12 Sep 2024 06:35:30 GMT
- Title: BrainWave: A Brain Signal Foundation Model for Clinical Applications
- Authors: Zhizhang Yuan, Fanqi Shen, Meng Li, Yuguo Yu, Chenhao Tan, Yang Yang,
- Abstract summary: We present BrainWave, the first foundation model for both invasive and non-invasive neural recordings.
BrainWave pretrained on more than 40,000 hours of electrical brain recordings (13.79 TB of data) from approximately 16,000 individuals.
Our analysis show that BrainWave outperforms all other competing models and consistently achieves state-of-the-art performance in the diagnosis and identification of neurological disorders.
- Score: 21.624743680602744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural electrical activity is fundamental to brain function, underlying a range of cognitive and behavioral processes, including movement, perception, decision-making, and consciousness. Abnormal patterns of neural signaling often indicate the presence of underlying brain diseases. The variability among individuals, the diverse array of clinical symptoms from various brain disorders, and the limited availability of diagnostic classifications, have posed significant barriers to formulating reliable model of neural signals for diverse application contexts. Here, we present BrainWave, the first foundation model for both invasive and non-invasive neural recordings, pretrained on more than 40,000 hours of electrical brain recordings (13.79 TB of data) from approximately 16,000 individuals. Our analysis show that BrainWave outperforms all other competing models and consistently achieves state-of-the-art performance in the diagnosis and identification of neurological disorders. We also demonstrate robust capabilities of BrainWave in enabling zero-shot transfer learning across varying recording conditions and brain diseases, as well as few-shot classification without fine-tuning, suggesting that BrainWave learns highly generalizable representations of neural signals. We hence believe that open-sourcing BrainWave will facilitate a wide range of clinical applications in medicine, paving the way for AI-driven approaches to investigate brain disorders and advance neuroscience research.
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - NeuroBind: Towards Unified Multimodal Representations for Neural Signals [20.02503060795981]
We present NeuroBind, a representation that unifies multiple brain signal types, including EEG, fMRI, calcium imaging, and spiking data.
This approach holds significant potential for advancing neuroscience research, improving AI systems, and developing neuroprosthetics and brain-computer interfaces.
arXiv Detail & Related papers (2024-07-19T04:42:52Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
We propose a novel model called BrainODE to achieve continuous modeling of dynamic brain signals.
By learning latent initial values and neural ODE functions from irregular time series, BrainODE effectively reconstructs brain signals at any time point.
arXiv Detail & Related papers (2024-04-30T10:53:30Z) - Personalized identification, prediction, and stimulation of neural
oscillations via data-driven models of epileptic network dynamics [0.0]
We develop a framework to extract predictive models of epileptic network dynamics directly from EEG data.
We show that it is possible to build a direct correspondence between the models of brain-network dynamics under periodic driving.
This suggests that periodic brain stimulation can drive pathological states of epileptic network dynamics towards a healthy functional brain state.
arXiv Detail & Related papers (2023-10-20T13:21:31Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - MBrain: A Multi-channel Self-Supervised Learning Framework for Brain
Signals [7.682832730967219]
We study the self-supervised learning framework for brain signals that can be applied to pre-train either SEEG or EEG data.
Inspired by this, we propose MBrain to learn implicit spatial and temporal correlations between different channels.
Our model outperforms several state-of-the-art time series SSL and unsupervised models, and has the ability to be deployed to clinical practice.
arXiv Detail & Related papers (2023-06-15T09:14:26Z) - BrainNet: Epileptic Wave Detection from SEEG with Hierarchical Graph
Diffusion Learning [21.689503325383253]
We propose the first data-driven study to detect epileptic waves in a real-world SEEG dataset.
In clinical practice, epileptic wave activities are considered to propagate between different regions in the brain.
The question of how to extract an exact epileptogenic network for each patient remains an open problem in the field of neuroscience.
arXiv Detail & Related papers (2023-06-15T08:29:10Z) - Deep learning reveals the common spectrum underlying multiple brain
disorders in youth and elders from brain functional networks [53.257804915263165]
Brain disorders in the early and late life of humans potentially share pathological alterations in brain functions.
Key evidence from neuroimaging data for pathological commonness remains unrevealed.
We build a deep learning model, using multi-site functional magnetic resonance imaging data, for classifying 5 different brain disorders from healthy controls.
arXiv Detail & Related papers (2023-02-23T09:22:05Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
We examine the impact of test loss, training corpus and model architecture on the prediction of functional Magnetic Resonance Imaging timecourses of participants listening to an audiobook.
We find that untrained versions of each model already explain significant amount of signal in the brain by capturing similarity in brain responses across identical words.
We suggest good practices for future studies aiming at explaining the human language system using neural language models.
arXiv Detail & Related papers (2022-07-07T15:37:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.