Quantum Simulation of SU(3) Lattice Yang Mills Theory at Leading Order in Large N
- URL: http://arxiv.org/abs/2402.10265v4
- Date: Mon, 26 Aug 2024 20:57:20 GMT
- Title: Quantum Simulation of SU(3) Lattice Yang Mills Theory at Leading Order in Large N
- Authors: Anthony N. Ciavarella, Christian W. Bauer,
- Abstract summary: We show how the Hilbert space and interactions can be expanded in inverse powers of N_c.
We give explicit constructions that allow simple representations of SU(3) gauge fields on qubits and qutrits.
This formulation allows a simulation of the real time dynamics of a SU(3) lattice gauge theory on a 5x5 and 8x8 lattice on ibm_torino with a CNOT depth of 113.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum simulations of the dynamics of QCD have been limited by the complexities of mapping the continuous gauge fields onto quantum computers. By parametrizing the gauge invariant Hilbert space in terms of plaquette degrees of freedom, we show how the Hilbert space and interactions can be expanded in inverse powers of N_c. At leading order in this expansion, the Hamiltonian simplifies dramatically, both in the required size of the Hilbert space as well as the type of interactions involved. Adding a truncation of the resulting Hilbert space in terms of local energy states we give explicit constructions that allow simple representations of SU(3) gauge fields on qubits and qutrits. This formulation allows a simulation of the real time dynamics of a SU(3) lattice gauge theory on a 5x5 and 8x8 lattice on ibm_torino with a CNOT depth of 113.
Related papers
- Quantum Random Walks and Quantum Oscillator in an Infinite-Dimensional Phase Space [45.9982965995401]
We consider quantum random walks in an infinite-dimensional phase space constructed using Weyl representation of the coordinate and momentum operators.
We find conditions for their strong continuity and establish properties of their generators.
arXiv Detail & Related papers (2024-06-15T17:39:32Z) - Message-Passing Neural Quantum States for the Homogeneous Electron Gas [41.94295877935867]
We introduce a message-passing-neural-network-based wave function Ansatz to simulate extended, strongly interacting fermions in continuous space.
We demonstrate its accuracy by simulating the ground state of the homogeneous electron gas in three spatial dimensions.
arXiv Detail & Related papers (2023-05-12T04:12:04Z) - Loop-string-hadron formulation of an SU(3) gauge theory with dynamical
quarks [0.0]
We present a loop-string-hadron (LSH) framework in 1+1 dimensions for describing the dynamics of SU(3) gauge fields coupled to staggered fermions.
The LSH approach uses gauge invariant degrees of freedoms such as loop (segments), string (ends), and hadrons, is free of all nonabelian gauge redundancy, and is described by a Hamiltonian containing only local interactions.
arXiv Detail & Related papers (2022-12-08T18:57:47Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Simulating the Femtouniverse on a Quantum Computer [0.0]
We compute the low-lying spectrum of 4D SU(2) Yang-Mills in a finite volume using quantum simulations.
In this limit the theory is equivalent to the quantum mechanics of three interacting particles moving inside a 3-ball with certain boundary conditions.
arXiv Detail & Related papers (2022-11-20T05:09:01Z) - Continuous percolation in a Hilbert space for a large system of qubits [58.720142291102135]
The percolation transition is defined through the appearance of the infinite cluster.
We show that the exponentially increasing dimensionality of the Hilbert space makes its covering by finite-size hyperspheres inefficient.
Our approach to the percolation transition in compact metric spaces may prove useful for its rigorous treatment in other contexts.
arXiv Detail & Related papers (2022-10-15T13:53:21Z) - Constraint Inequalities from Hilbert Space Geometry & Efficient Quantum
Computation [0.0]
Useful relations describing arbitrary parameters of given quantum systems can be derived from simple physical constraints imposed on the vectors in the corresponding Hilbert space.
We describe the procedure and point out that this parallels the necessary considerations that make Quantum Simulation of quantum fields possible.
We suggest how to use these ideas to guide and improve parameterized quantum circuits.
arXiv Detail & Related papers (2022-10-13T22:13:43Z) - Quantum transport and localization in 1d and 2d tight-binding lattices [39.26291658500249]
Particle transport and localization phenomena in condensed-matter systems can be modeled using a tight-binding lattice Hamiltonian.
Here, we experimentally study quantum transport in one-dimensional and two-dimensional tight-binding lattices, emulated by a fully controllable $3 times 3$ array of superconducting qubits.
arXiv Detail & Related papers (2021-07-11T12:36:12Z) - Constructing Qudits from Infinite Dimensional Oscillators by Coupling to
Qubits [3.161454999079499]
We show how a Hilbert space can be analytically constructed from the lowest energy states of a qubit-oscillator system.
This work suggests that the combination of a qubit and a bosonic system may serve as hardware-efficient quantum resources for quantum information processing.
arXiv Detail & Related papers (2021-05-06T18:00:31Z) - A Trailhead for Quantum Simulation of SU(3) Yang-Mills Lattice Gauge
Theory in the Local Multiplet Basis [0.0]
Reformulations of the gauge fields can modify the ratio of physical to gauge-variant states.
This paper considers the implications of representing SU(3) Yang-Mills gauge theory on a lattice of irreducible representations.
arXiv Detail & Related papers (2021-01-25T16:41:56Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.