Towards entropic uncertainty relations for non-regular Hilbert spaces
- URL: http://arxiv.org/abs/2503.19216v1
- Date: Mon, 24 Mar 2025 23:41:50 GMT
- Title: Towards entropic uncertainty relations for non-regular Hilbert spaces
- Authors: Alejandro Corichi, Angel Garcia Chung, Federico Zadra,
- Abstract summary: The Entropic Uncertainty Relations (EUR) result from inequalities that are intrinsic to the Hilbert space and its dual with no direct connection to the Canonical Commutation Relations.<n>The analysis of these EUR in the context of singular Hilbert spaces has not been addressed.
- Score: 44.99833362998488
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Entropic Uncertainty Relations (EUR) result from inequalities that are intrinsic to the Hilbert space and its dual with no direct connection to the Canonical Commutation Relations. Bialynicky-Mielcisnky obtained them in \cite{bialynicki1975uncertainty} attending Hilbert spaces with a Lebesgue measure. The analysis of these EUR in the context of singular Hilbert spaces has not been addressed. Singular Hilbert spaces are widely used in scenarios where some discretization of the space (or spacetime) is considered, e.g., loop quantum gravity, loop quantum cosmology and polymer quantum mechanics. In this work, we present an overview of the essential literature background and the road map we plan to follow to obtain the EUR in polymer quantum mechanics.
Related papers
- Non-Orientable Quantum Hilbert Space Bundle [0.0]
Instead of relying on hints from the Hamiltonian eigenvalues, the behavior of the fiber metric and the evolution of quantum states are analyzed.<n>The results reveal that the Hilbert space bundle around an exceptional point is non-orientable.
arXiv Detail & Related papers (2024-12-09T14:58:26Z) - Hilbert space separability and the Einstein-Podolsky-Rosen state [0.0]
We propose a test that witnesses the non-separability of the Hilbert space.<n>We consider the original Einstein-Podolsky-Rosen (EPR) state as a candidate for possessing nonlocal correlations stronger than any state in a separable Hilbert space.
arXiv Detail & Related papers (2024-12-02T19:00:03Z) - Hilbert space geometry and quantum chaos [39.58317527488534]
We consider the symmetric part of the QGT for various multi-parametric random matrix Hamiltonians.
We find for a two-dimensional parameter space that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself as a singular geometry with a conical defect.
arXiv Detail & Related papers (2024-11-18T19:00:17Z) - The Fermionic Entanglement Entropy and Area Law for the Relativistic Dirac Vacuum State [44.99833362998488]
We consider the fermionic entanglement entropy for the free Dirac field in a bounded spatial region of Minkowski spacetime.
An area law is proven in the limiting cases where the volume tends to infinity and/or the regularization length tends to zero.
arXiv Detail & Related papers (2023-10-05T12:08:03Z) - Bell's Inequality and Heisenberg Measurements on Relativistic Quantum
Systems [0.0]
This note extends the theory of Heisenberg measurements to quantum systems with representations in general geometric spaces.
Probability interpretations of quantum measurements may depend not only on the measuring instruments and the system states but also on the geometric space in which the measurements are conducted.
An explicit numerical example is given of a Heisenberg measurement with a complete set of common observables that violates Bell's inequality in Minkowski space but, mutatatis mutandis satisfies it in Hilbert space.
arXiv Detail & Related papers (2023-04-25T14:42:31Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Continuous percolation in a Hilbert space for a large system of qubits [58.720142291102135]
The percolation transition is defined through the appearance of the infinite cluster.
We show that the exponentially increasing dimensionality of the Hilbert space makes its covering by finite-size hyperspheres inefficient.
Our approach to the percolation transition in compact metric spaces may prove useful for its rigorous treatment in other contexts.
arXiv Detail & Related papers (2022-10-15T13:53:21Z) - Entanglement and Complexity of Purification in (1+1)-dimensional free
Conformal Field Theories [55.53519491066413]
We find pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace.
We analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field theories.
arXiv Detail & Related papers (2020-09-24T18:00:13Z) - Fate of fractional quantum Hall states in open quantum systems:
characterization of correlated topological states for the full Liouvillian [0.0]
We introduce the pseudo-spin Chern number of the Liouvillian which is computed by twisting the boundary conditions only for one of the subspaces of the doubled Hilbert space.
The existence of such a topological invariant elucidates that the topological properties remain unchanged even in the presence of the jump term.
arXiv Detail & Related papers (2020-05-26T11:34:00Z) - Quantum Space, Quantum Time, and Relativistic Quantum Mechanics [0.0]
We treat space and time as quantum degrees of freedom on an equal footing in Hilbert space.
Motivated by considerations in quantum gravity, we focus on a paradigm dealing with linear, first-order translations Hamiltonian and momentum constraints.
arXiv Detail & Related papers (2020-04-20T09:04:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.