Can we Soft Prompt LLMs for Graph Learning Tasks?
- URL: http://arxiv.org/abs/2402.10359v2
- Date: Sat, 16 Mar 2024 19:56:04 GMT
- Title: Can we Soft Prompt LLMs for Graph Learning Tasks?
- Authors: Zheyuan Liu, Xiaoxin He, Yijun Tian, Nitesh V. Chawla,
- Abstract summary: GraphPrompter is a framework designed to align graph information with Large Language Models (LLMs) via soft prompts.
The framework unveils the substantial capabilities of LLMs as predictors in graph-related tasks.
- Score: 22.286189757942054
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Graph plays an important role in representing complex relationships in real-world applications such as social networks, biological data and citation networks. In recent years, Large Language Models (LLMs) have achieved tremendous success in various domains, which makes applying LLMs to graphs particularly appealing. However, directly applying LLMs to graph modalities presents unique challenges due to the discrepancy and mismatch between the graph and text modalities. Hence, to further investigate LLMs' potential for comprehending graph information, we introduce GraphPrompter, a novel framework designed to align graph information with LLMs via soft prompts. Specifically, GraphPrompter consists of two main components: a graph neural network to encode complex graph information and an LLM that effectively processes textual information. Comprehensive experiments on various benchmark datasets under node classification and link prediction tasks demonstrate the effectiveness of our proposed method. The GraphPrompter framework unveils the substantial capabilities of LLMs as predictors in graph-related tasks, enabling researchers to utilize LLMs across a spectrum of real-world graph scenarios more effectively.
Related papers
- How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - Investigating Instruction Tuning Large Language Models on Graphs [37.20541711360419]
There's growing interest in applying Large Language Models (LLMs) to graph-related tasks.
This study delves into the capabilities of instruction-following LLMs for engaging with real-world graphs.
arXiv Detail & Related papers (2024-08-10T06:54:35Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
We introduce Graph-aware.
Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning.
We use a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt.
We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations.
arXiv Detail & Related papers (2024-04-28T18:36:59Z) - Graph Machine Learning in the Era of Large Language Models (LLMs) [44.25731266093967]
Graphs play an important role in representing complex relationships in various domains like social networks, knowledge graphs, and molecular discovery.
With the advent of deep learning, Graph Neural Networks (GNNs) have emerged as a cornerstone in Graph Machine Learning (Graph ML)
Recently, LLMs have demonstrated unprecedented capabilities in language tasks and are widely adopted in a variety of applications such as computer vision and recommender systems.
arXiv Detail & Related papers (2024-04-23T11:13:39Z) - A Survey of Large Language Models on Generative Graph Analytics: Query, Learning, and Applications [4.777453721753589]
Large language models (LLMs) have showcased a strong generalization ability to handle various NLP and multi-mode tasks.
Compared with graph learning models, LLMs enjoy superior advantages in addressing the challenges of generalizing graph tasks.
We study the key problems of LLM-based generative graph analytics (LLM-GGA) with three categories.
arXiv Detail & Related papers (2024-04-23T07:39:24Z) - Exploring the Potential of Large Language Models in Graph Generation [51.046188600990014]
Graph generation requires large language models (LLMs) to generate graphs with given properties.
This paper explores the abilities of LLMs for graph generation with systematical task designs and experiments.
Our evaluations demonstrate that LLMs, particularly GPT-4, exhibit preliminary abilities in graph generation tasks.
arXiv Detail & Related papers (2024-03-21T12:37:54Z) - Large Language Models on Graphs: A Comprehensive Survey [77.16803297418201]
We provide a systematic review of scenarios and techniques related to large language models on graphs.
We first summarize potential scenarios of adopting LLMs on graphs into three categories, namely pure graphs, text-attributed graphs, and text-paired graphs.
We discuss the real-world applications of such methods and summarize open-source codes and benchmark datasets.
arXiv Detail & Related papers (2023-12-05T14:14:27Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
Large language models (LLMs) have emerged as frontrunners, showcasing unparalleled prowess in diverse applications.
Merging the capabilities of LLMs with graph-structured data has been a topic of keen interest.
This paper bifurcates such integrations into two predominant categories.
arXiv Detail & Related papers (2023-10-09T07:59:34Z) - Beyond Text: A Deep Dive into Large Language Models' Ability on
Understanding Graph Data [13.524529952170672]
Large language models (LLMs) have achieved impressive performance on many natural language processing tasks.
We aim to assess whether LLMs can effectively process graph data and leverage topological structures to enhance performance.
By comparing LLMs' performance with specialized graph models, we offer insights into the strengths and limitations of employing LLMs for graph analytics.
arXiv Detail & Related papers (2023-10-07T23:25:22Z) - Exploring the Potential of Large Language Models (LLMs) in Learning on
Graphs [59.74814230246034]
Large Language Models (LLMs) have been proven to possess extensive common knowledge and powerful semantic comprehension abilities.
We investigate two possible pipelines: LLMs-as-Enhancers and LLMs-as-Predictors.
arXiv Detail & Related papers (2023-07-07T05:31:31Z) - Graph-ToolFormer: To Empower LLMs with Graph Reasoning Ability via
Prompt Augmented by ChatGPT [10.879701971582502]
We aim to develop a large language model (LLM) with the reasoning ability on complex graph data.
Inspired by the latest ChatGPT and Toolformer models, we propose the Graph-ToolFormer framework to teach LLMs themselves with prompts augmented by ChatGPT to use external graph reasoning API tools.
arXiv Detail & Related papers (2023-04-10T05:25:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.