GraphICL: Unlocking Graph Learning Potential in LLMs through Structured Prompt Design
- URL: http://arxiv.org/abs/2501.15755v1
- Date: Mon, 27 Jan 2025 03:50:30 GMT
- Title: GraphICL: Unlocking Graph Learning Potential in LLMs through Structured Prompt Design
- Authors: Yuanfu Sun, Zhengnan Ma, Yi Fang, Jing Ma, Qiaoyu Tan,
- Abstract summary: Graph In-context Learning (GraphICL) Benchmark is a comprehensive benchmark comprising novel prompt templates to capture graph structure and handle limited label knowledge.
Our systematic evaluation shows that general-purpose LLMs equipped with our GraphICL outperform state-of-the-art specialized graph LLMs and graph neural network models.
- Score: 13.365623514253926
- License:
- Abstract: The growing importance of textual and relational systems has driven interest in enhancing large language models (LLMs) for graph-structured data, particularly Text-Attributed Graphs (TAGs), where samples are represented by textual descriptions interconnected by edges. While research has largely focused on developing specialized graph LLMs through task-specific instruction tuning, a comprehensive benchmark for evaluating LLMs solely through prompt design remains surprisingly absent. Without such a carefully crafted evaluation benchmark, most if not all, tailored graph LLMs are compared against general LLMs using simplistic queries (e.g., zero-shot reasoning with LLaMA), which can potentially camouflage many advantages as well as unexpected predicaments of them. To achieve more general evaluations and unveil the true potential of LLMs for graph tasks, we introduce Graph In-context Learning (GraphICL) Benchmark, a comprehensive benchmark comprising novel prompt templates designed to capture graph structure and handle limited label knowledge. Our systematic evaluation shows that general-purpose LLMs equipped with our GraphICL outperform state-of-the-art specialized graph LLMs and graph neural network models in resource-constrained settings and out-of-domain tasks. These findings highlight the significant potential of prompt engineering to enhance LLM performance on graph learning tasks without training and offer a strong baseline for advancing research in graph LLMs.
Related papers
- How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - Investigating Instruction Tuning Large Language Models on Graphs [37.20541711360419]
There's growing interest in applying Large Language Models (LLMs) to graph-related tasks.
This study delves into the capabilities of instruction-following LLMs for engaging with real-world graphs.
arXiv Detail & Related papers (2024-08-10T06:54:35Z) - Can LLM Graph Reasoning Generalize beyond Pattern Memorization? [46.93972334344908]
We evaluate whether large language models (LLMs) can go beyond semantic, numeric, structural, reasoning patterns in the synthetic training data and improve utility on real-world graph-based tasks.
We find that while post-training alignment is most promising for real-world tasks, empowering LLM graph reasoning to go beyond pattern remains an open research question.
arXiv Detail & Related papers (2024-06-23T02:59:15Z) - Exploring the Potential of Large Language Models in Graph Generation [51.046188600990014]
Graph generation requires large language models (LLMs) to generate graphs with given properties.
This paper explores the abilities of LLMs for graph generation with systematical task designs and experiments.
Our evaluations demonstrate that LLMs, particularly GPT-4, exhibit preliminary abilities in graph generation tasks.
arXiv Detail & Related papers (2024-03-21T12:37:54Z) - Can we Soft Prompt LLMs for Graph Learning Tasks? [22.286189757942054]
GraphPrompter is a framework designed to align graph information with Large Language Models (LLMs) via soft prompts.
The framework unveils the substantial capabilities of LLMs as predictors in graph-related tasks.
arXiv Detail & Related papers (2024-02-15T23:09:42Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
We present the Disentangled Graph-Text Learner (DGTL) model, which is able to enhance the reasoning and predicting capabilities of LLMs for TAGs.
Our proposed DGTL model incorporates graph structure information through tailored disentangled graph neural network (GNN) layers.
Experimental evaluations demonstrate the effectiveness of the proposed DGTL model on achieving superior or comparable performance over state-of-the-art baselines.
arXiv Detail & Related papers (2023-10-27T14:00:04Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
Large language models (LLMs) have emerged as frontrunners, showcasing unparalleled prowess in diverse applications.
Merging the capabilities of LLMs with graph-structured data has been a topic of keen interest.
This paper bifurcates such integrations into two predominant categories.
arXiv Detail & Related papers (2023-10-09T07:59:34Z) - Beyond Text: A Deep Dive into Large Language Models' Ability on
Understanding Graph Data [13.524529952170672]
Large language models (LLMs) have achieved impressive performance on many natural language processing tasks.
We aim to assess whether LLMs can effectively process graph data and leverage topological structures to enhance performance.
By comparing LLMs' performance with specialized graph models, we offer insights into the strengths and limitations of employing LLMs for graph analytics.
arXiv Detail & Related papers (2023-10-07T23:25:22Z) - Exploring the Potential of Large Language Models (LLMs) in Learning on
Graphs [59.74814230246034]
Large Language Models (LLMs) have been proven to possess extensive common knowledge and powerful semantic comprehension abilities.
We investigate two possible pipelines: LLMs-as-Enhancers and LLMs-as-Predictors.
arXiv Detail & Related papers (2023-07-07T05:31:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.