Resilience of Rademacher chaos of low degree
- URL: http://arxiv.org/abs/2402.10504v4
- Date: Wed, 16 Apr 2025 09:25:06 GMT
- Title: Resilience of Rademacher chaos of low degree
- Authors: Elad Aigner-Horev, Daniel Rosenberg, Roi Weiss,
- Abstract summary: resilience of Rademacher chaos is the maximum number of adversarial sign-flips that the chaos can sustain.<n>We provide probabilistic lower-bound guarantees for the resilience of Rademacher chaos of arbitrary yet sufficiently low degree.<n>Our results for decoupled Rademacher chaos of order two and that of higher order whilst are established through the same conceptual framework, differ substantially.
- Score: 5.3390449198644445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The resilience of a Rademacher chaos is the maximum number of adversarial sign-flips that the chaos can sustain without having its largest atom probability significantly altered. Inspired by probabilistic lower-bound guarantees for the resilience of linear Rademacher chaos, obtained by Bandeira, Ferber, and Kwan (Advances in Mathematics, Vol. $319$, $2017$), we provide probabilistic lower-bound guarantees for the resilience of Rademacher chaos of arbitrary yet sufficiently low degree. Our main results distinguish between Rademacher chaos of order two and those of higher order. In that, our first main result pertains to the resilience of decoupled bilinear Rademacher forms where different asymptotic behaviour is observed for sparse and dense matrices. For our second main result, we bootstrap our first result in order to provide resilience guarantees for quadratic Rademacher chaos. Our third main result, generalises the first and handles the resilience of decoupled Rademacher chaos of arbitrary yet sufficiently low order. Our results for decoupled Rademacher chaos of order two and that of higher order whilst are established through the same conceptual framework, differ substantially. A difference incurred due to the implementation of the same conceptual argument. The order two result is established using Dudley's maximal inequality for sub-Gaussian processes, the Hanson-Wright inequality, as well as the Kolmogorov-Rogozin inequality. To handle higher order chaos, appeals to Dudley's inequality as well as the Hanson-Wright inequality are replaced with tools suited for random tensors. Appeals to the Hanson-Wright inequality are replaced with appeals to a concentration result for random tensors put forth by Adamczak and Wolff. Our results are instance-dependent and thus allow for the efficient computation of resilience guarantees provided the order of the chaos is constant.
Related papers
- Regret Bounds for Robust Online Decision Making [49.1574468325115]
We propose a framework which generalizes "decision making with structured observations"
In this framework, each model associates each decision with a convex set of probability distributions over outcomes.
We then derive a theory of regret bounds for this framework.
arXiv Detail & Related papers (2025-04-09T12:25:00Z) - On the Injective Norm of Sums of Random Tensors and the Moments of Gaussian Chaoses [2.918940961856197]
We prove an upper bound on the expected $ell_p$ injective norm of sums of subgaussian random tensors.
Our proof is simple and does not rely on any explicit geometric or chaining arguments.
arXiv Detail & Related papers (2025-03-13T17:31:51Z) - Tensor cumulants for statistical inference on invariant distributions [49.80012009682584]
We show that PCA becomes computationally hard at a critical value of the signal's magnitude.
We define a new set of objects, which provide an explicit, near-orthogonal basis for invariants of a given degree.
It also lets us analyze a new problem of distinguishing between different ensembles.
arXiv Detail & Related papers (2024-04-29T14:33:24Z) - On Ranking-based Tests of Independence [0.0]
We develop a novel nonparametric framework to test the independence of two random variables $mathbfX$ and $mathbfY$.
We consider a wide class of rank statistics encompassing many ways of deviating from the diagonal in the ROC space to build tests of independence.
arXiv Detail & Related papers (2024-03-12T10:00:00Z) - High Probability Guarantees for Random Reshuffling [4.794366598086316]
We consider the gradient method with random reshuffling ($mathsfRR$) for tackling optimisation problems.
We provide first-order complexity guarantees for the method.
We derive that $mathsfp$-$mathsfRR$provably escapes strict points and a high tail.
arXiv Detail & Related papers (2023-11-20T15:17:20Z) - Exact Non-Oblivious Performance of Rademacher Random Embeddings [79.28094304325116]
This paper revisits the performance of Rademacher random projections.
It establishes novel statistical guarantees that are numerically sharp and non-oblivious with respect to the input data.
arXiv Detail & Related papers (2023-03-21T11:45:27Z) - Average-Case Complexity of Tensor Decomposition for Low-Degree
Polynomials [93.59919600451487]
"Statistical-computational gaps" occur in many statistical inference tasks.
We consider a model for random order-3 decomposition where one component is slightly larger in norm than the rest.
We show that tensor entries can accurately estimate the largest component when $ll n3/2$ but fail to do so when $rgg n3/2$.
arXiv Detail & Related papers (2022-11-10T00:40:37Z) - Reproducible Bandits [95.8830340560603]
A policy in the bandit environment is called reproducible if it pulls, with high probability, the exact same sequence of arms in two different executions.
We show that not only do reproducible policies exist, but also they achieve almost the same optimal (non-reproducible) regret bounds in terms of the time horizon.
Our results show that even though randomization is crucial for the exploration-exploitation trade-off, an optimal balance can still be achieved while pulling the exact same arms in two different rounds of executions.
arXiv Detail & Related papers (2022-10-04T20:36:45Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Random Rank: The One and Only Strategyproof and Proportionally Fair
Randomized Facility Location Mechanism [103.36492220921109]
We show that although Strong Proportionality is a well-motivated and basic axiom, there is no deterministic strategyproof mechanism satisfying the property.
We then identify a randomized mechanism called Random Rank which satisfies Strong Proportionality in expectation.
Our main characterizes Random Rank as the unique mechanism that achieves universal truthfulness, universal anonymity, and Strong Proportionality in expectation.
arXiv Detail & Related papers (2022-05-30T00:51:57Z) - $O(N^2)$ Universal Antisymmetry in Fermionic Neural Networks [107.86545461433616]
We propose permutation-equivariant architectures, on which a determinant Slater is applied to induce antisymmetry.
FermiNet is proved to have universal approximation capability with a single determinant, namely, it suffices to represent any antisymmetric function.
We substitute the Slater with a pairwise antisymmetry construction, which is easy to implement and can reduce the computational cost to $O(N2)$.
arXiv Detail & Related papers (2022-05-26T07:44:54Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
We prove a Lipschitzness lower bound $Omega(sqrtn/p)$ of robustness of interpolating neural network parameters on arbitrary distributions.
We then show the potential benefit of overparametrization for smooth data when $n=mathrmpoly(d)$.
We disprove the potential existence of an $O(1)$-Lipschitz robust interpolating function when $n=exp(omega(d))$.
arXiv Detail & Related papers (2022-02-23T16:10:23Z) - A PDE-Based Analysis of the Symmetric Two-Armed Bernoulli Bandit [1.2183405753834562]
This work addresses a version of the two-armed Bernoulli bandit problem where the sum of the means of the arms is one.
We obtain the leading order terms of the minmax optimal regret and pseudoregret for this problem by associating each of them with a solution of a linear heat equation.
arXiv Detail & Related papers (2022-02-11T17:03:18Z) - A Weaker Faithfulness Assumption based on Triple Interactions [89.59955143854556]
We propose a weaker assumption that we call $2$-adjacency faithfulness.
We propose a sound orientation rule for causal discovery that applies under weaker assumptions.
arXiv Detail & Related papers (2020-10-27T13:04:08Z) - Probabilistic Sequential Shrinking: A Best Arm Identification Algorithm
for Stochastic Bandits with Corruptions [91.8283876874947]
We consider a best arm identification (BAI) problem for Sequential bandits with adversarial corruptions in the fixed-budget setting of T steps.
We design a novel randomized algorithm, Probabilistic Shrinking($u$) (PSS($u$)), which is agnostic to the amount of corruptions.
We show that when the CPS is sufficiently large, no algorithm can achieve a BAI probability tending to $1$ as $Trightarrow infty$.
arXiv Detail & Related papers (2020-10-15T17:34:26Z) - Online and Distribution-Free Robustness: Regression and Contextual
Bandits with Huber Contamination [29.85468294601847]
We revisit two classic high-dimensional online learning problems, namely linear regression and contextual bandits.
We show that our algorithms succeed where conventional methods fail.
arXiv Detail & Related papers (2020-10-08T17:59:05Z) - Suboptimality of Constrained Least Squares and Improvements via
Non-Linear Predictors [3.5788754401889014]
We study the problem of predicting as well as the best linear predictor in a bounded Euclidean ball with respect to the squared loss.
We discuss additional distributional assumptions sufficient to guarantee an $O(d/n)$ excess risk rate for the least squares estimator.
arXiv Detail & Related papers (2020-09-19T21:39:46Z) - Statistical Query Lower Bounds for Tensor PCA [10.701091387118023]
In the PCA problem introduced by Richard and Montanari, one is given a dataset consisting of $n$ samples $mathbbEmathbfT_1:n$ of i.i.d. Perkins Gaussian tensors of order $k$ with the promise that $mathbbEmathbfT_1:n$ is a rank-1.
The goal is to estimate $mathbbE mathbfT_1$, but no time estimator is known.
We provide a sharp analysis of the optimal sample complexity
arXiv Detail & Related papers (2020-08-10T13:14:34Z) - Robustly Learning any Clusterable Mixture of Gaussians [55.41573600814391]
We study the efficient learnability of high-dimensional Gaussian mixtures in the adversarial-robust setting.
We provide an algorithm that learns the components of an $epsilon$-corrupted $k$-mixture within information theoretically near-optimal error proofs of $tildeO(epsilon)$.
Our main technical contribution is a new robust identifiability proof clusters from a Gaussian mixture, which can be captured by the constant-degree Sum of Squares proof system.
arXiv Detail & Related papers (2020-05-13T16:44:12Z) - The Bethe and Sinkhorn Permanents of Low Rank Matrices and Implications
for Profile Maximum Likelihood [33.51964370430905]
We provide new bounds on the quality of approximation of the Bethe and Sinkhorn permanents.
We establish a surprising connection between the convex relaxation in prior work and the well-studied Bethe and Sinkhorn approximations.
arXiv Detail & Related papers (2020-04-06T06:40:03Z) - Finite-Time Analysis of Round-Robin Kullback-Leibler Upper Confidence
Bounds for Optimal Adaptive Allocation with Multiple Plays and Markovian
Rewards [10.66048003460524]
We study an extension of the classic multi-armed bandit problem which involves multiple plays and Markovian rewards in the rested bandits setting.
In order to tackle this problem we consider an adaptive allocation rule which at each stage combines the information from the sample means of all the arms, with the Kullback-Leibler upper confidence bound of a single arm which is selected in round-robin way.
arXiv Detail & Related papers (2020-01-30T08:09:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.