Real-Time Model-Based Quantitative Ultrasound and Radar
- URL: http://arxiv.org/abs/2402.10520v1
- Date: Fri, 16 Feb 2024 09:09:16 GMT
- Title: Real-Time Model-Based Quantitative Ultrasound and Radar
- Authors: Tom Sharon and Yonina C. Eldar
- Abstract summary: We propose a neural network based on the physical model of wave propagation, which defines the relationship between the received signals and physical properties.
Our network can reconstruct multiple physical properties in less than one second for complex and realistic scenarios.
- Score: 65.268245109828
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ultrasound and radar signals are highly beneficial for medical imaging as
they are non-invasive and non-ionizing. Traditional imaging techniques have
limitations in terms of contrast and physical interpretation. Quantitative
medical imaging can display various physical properties such as speed of sound,
density, conductivity, and relative permittivity. This makes it useful for a
wider range of applications, including improving cancer detection, diagnosing
fatty liver, and fast stroke imaging. However, current quantitative imaging
techniques that estimate physical properties from received signals, such as
Full Waveform Inversion, are time-consuming and tend to converge to local
minima, making them unsuitable for medical imaging. To address these
challenges, we propose a neural network based on the physical model of wave
propagation, which defines the relationship between the received signals and
physical properties. Our network can reconstruct multiple physical properties
in less than one second for complex and realistic scenarios, using data from
only eight elements. We demonstrate the effectiveness of our approach for both
radar and ultrasound signals.
Related papers
- Active inference and deep generative modeling for cognitive ultrasound [20.383444113659476]
We show that US imaging systems can be recast as information-seeking agents that engage in reciprocal interactions with their anatomical environment.
Such agents autonomously adapt their transmit-receive sequences to fully personalize imaging and actively maximize information gain in-situ.
We then equip systems with a mechanism to actively reduce uncertainty and maximize diagnostic value across a sequence of experiments.
arXiv Detail & Related papers (2024-10-17T08:09:14Z) - Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Cardiac ultrasound simulation for autonomous ultrasound navigation [4.036497185262817]
We propose a method to generate large amounts of ultrasound images from other modalities and from arbitrary positions.
We present a novel simulation pipeline which uses segmentations from other modalities, an optimized data representation and GPU-accelerated Monte Carlo path tracing.
The proposed approach allows for fast and accurate patient-specific ultrasound image generation, and its usability for training networks for navigation-related tasks is demonstrated.
arXiv Detail & Related papers (2024-02-09T15:14:48Z) - LOTUS: Learning to Optimize Task-based US representations [39.81131738128329]
Anatomical segmentation of organs in ultrasound images is essential to many clinical applications.
Existing deep neural networks require a large amount of labeled data for training in order to achieve clinically acceptable performance.
In this paper, we propose a novel approach for learning to optimize task-based ultra-sound image representations.
arXiv Detail & Related papers (2023-07-29T16:29:39Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
Beamforming, the process of mapping received ultrasound echoes to the spatial image domain, lies at the heart of the ultrasound image formation chain.
Modern ultrasound imaging leans heavily on innovations in powerful digital receive channel processing.
Deep learning methods can play a compelling role in the digital beamforming pipeline.
arXiv Detail & Related papers (2021-09-23T15:15:21Z) - A deep learning pipeline for identification of motor units in
musculoskeletal ultrasound [0.5249805590164902]
It has been shown that ultrafast ultrasound can be used to record and analyze the mechanical response of individual MUs.
We present an alternative method - a deep learning pipeline - to identify active MUs in ultrasound image sequences.
We train evaluate the model using simulated data mimicking the complex activation pattern and overlapping territories.
arXiv Detail & Related papers (2020-09-23T20:44:29Z) - CNN-Based Image Reconstruction Method for Ultrafast Ultrasound Imaging [9.659642285903418]
Ultrafast ultrasound (US) revolutionized biomedical imaging with its capability of acquiring full-view frames at over 1 kHz.
It suffers from strong diffraction artifacts, mainly caused by grating lobes, side lobes, or edge waves.
We propose a two-step convolutional neural network (CNN)-based image reconstruction method, compatible with real-time imaging.
arXiv Detail & Related papers (2020-08-28T17:15:37Z) - Diffusion-Weighted Magnetic Resonance Brain Images Generation with
Generative Adversarial Networks and Variational Autoencoders: A Comparison
Study [55.78588835407174]
We show that high quality, diverse and realistic-looking diffusion-weighted magnetic resonance images can be synthesized using deep generative models.
We present two networks, the Introspective Variational Autoencoder and the Style-Based GAN, that qualify for data augmentation in the medical field.
arXiv Detail & Related papers (2020-06-24T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.