論文の概要: Towards Uncovering How Large Language Model Works: An Explainability Perspective
- arxiv url: http://arxiv.org/abs/2402.10688v2
- Date: Mon, 15 Apr 2024 18:43:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 23:05:59.044295
- Title: Towards Uncovering How Large Language Model Works: An Explainability Perspective
- Title(参考訳): 大規模言語モデルの動作方法の解明に向けて - 説明可能性の観点から
- Authors: Haiyan Zhao, Fan Yang, Bo Shen, Himabindu Lakkaraju, Mengnan Du,
- Abstract要約: 大規模言語モデル(LLM)は言語タスクのブレークスルーをもたらしたが、その顕著な一般化と推論能力を実現する内部メカニズムは不透明のままである。
本稿では,LLM機能の基礎となるメカニズムを,説明可能性のレンズを通して明らかにすることを目的とする。
- 参考スコア(独自算出の注目度): 38.07611356855978
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have led to breakthroughs in language tasks, yet the internal mechanisms that enable their remarkable generalization and reasoning abilities remain opaque. This lack of transparency presents challenges such as hallucinations, toxicity, and misalignment with human values, hindering the safe and beneficial deployment of LLMs. This paper aims to uncover the mechanisms underlying LLM functionality through the lens of explainability. First, we review how knowledge is architecturally composed within LLMs and encoded in their internal parameters via mechanistic interpretability techniques. Then, we summarize how knowledge is embedded in LLM representations by leveraging probing techniques and representation engineering. Additionally, we investigate the training dynamics through a mechanistic perspective to explain phenomena such as grokking and memorization. Lastly, we explore how the insights gained from these explanations can enhance LLM performance through model editing, improve efficiency through pruning, and better align with human values.
- Abstract(参考訳): 大規模言語モデル(LLM)は言語タスクのブレークスルーをもたらしたが、その顕著な一般化と推論能力を実現する内部メカニズムは不透明のままである。
この透明性の欠如は、幻覚、毒性、人的価値との相違といった課題を提起し、LLMの安全で有益な展開を妨げる。
本稿では,LLM機能の基礎となるメカニズムを,説明可能性のレンズを通して明らかにすることを目的とする。
まず,LLM内の知識がどのように構成され,その内部パラメータに機械的解釈可能性技術を用いて符号化されるのかを概観する。
次に、探索技術と表現工学を活用して、LLM表現に知識がどのように埋め込まれているかを要約する。
さらに, 力学的な観点から, グラッキングや暗記などの現象を説明するために, トレーニングダイナミクスについて検討する。
最後に, これらの説明から得られた知見が, モデル編集によるLCM性能の向上, 刈り取りによる効率の向上, 人的価値の整合性向上にどのように寄与するかを検討する。
関連論文リスト
- Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
大規模言語モデル(LLM)は、人間の指示に基づいて様々なタスクに取り組む際に、顕著な効率性を示した。
しかし、数学や物理学の限界など、推論を必要とするタスクに苦しむことが研究によって明らかになっている。
このことは、LLMが組み込み知識を本当に理解しているか、それとも、コンテンツに対する真の理解なしにトークン分布を複製することを学ぶだけなのかという疑問を提起する。
モデルの推論能力を高めるために,新しいパラメータ効率細調整法であるDecon Causal Adaptation (DCA)を提案する。
論文 参考訳(メタデータ) (2024-09-04T13:17:09Z) - Can Large Language Models Understand DL-Lite Ontologies? An Empirical Study [10.051572826948762]
大規模モデル(LLM)は、幅広いタスクを解く上で大きな成果を上げている。
我々は、記述論理(DL-Lite)を理解するLLMの能力を実証的に分析する。
LLMは概念と役割の形式的構文とモデル理論的意味論を理解する。
論文 参考訳(メタデータ) (2024-06-25T13:16:34Z) - Fact :Teaching MLLMs with Faithful, Concise and Transferable Rationales [102.54274021830207]
MLLMの教えに忠実で簡潔で伝達しやすい多モーダル論理を生成するために設計された新しいパラダイムであるFactを紹介する。
プログラミングパラダイムからエンドツーエンドパラダイムに転送可能な合理性をフィルタリングして、転送可能性を保証する。
また,画像とテキストの相関性が高いため,幻覚の低減も図っている。
論文 参考訳(メタデータ) (2024-04-17T07:20:56Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
この調査は、Large Language Models (LLMs) における説明可能性の向上を示唆している。
主に、トレーニング済みの Transformer ベースの LLM に重点を置いています。
説明可能性の活用を考える際に、モデル編集、制御生成、モデル拡張に集中するいくつかの魅力的な方法を検討する。
論文 参考訳(メタデータ) (2024-01-23T16:09:53Z) - Sparsity-Guided Holistic Explanation for LLMs with Interpretable
Inference-Time Intervention [53.896974148579346]
大規模言語モデル(LLM)は、様々な自然言語処理領域において前例のないブレークスルーを達成した。
LLMの謎的なブラックボックスの性質は、透過的で説明可能なアプリケーションを妨げる、解釈可能性にとって重要な課題である。
本稿では,LLMの全体的解釈を提供することを目的として,スポーシティ誘導技術に係わる新しい方法論を提案する。
論文 参考訳(メタデータ) (2023-12-22T19:55:58Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
大規模言語モデル(LLM)は、自然言語処理における印象的な能力を示している。
本稿では,トランスフォーマーに基づく言語モデルを記述する手法について,説明可能性の分類法を紹介した。
論文 参考訳(メタデータ) (2023-09-02T22:14:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。