Stochastic Localization via Iterative Posterior Sampling
- URL: http://arxiv.org/abs/2402.10758v2
- Date: Tue, 28 May 2024 12:05:08 GMT
- Title: Stochastic Localization via Iterative Posterior Sampling
- Authors: Louis Grenioux, Maxence Noble, Marylou GabriƩ, Alain Oliviero Durmus,
- Abstract summary: We consider a general localization framework and introduce an explicit class of observation processes, associated with flexible denoising schedules.
We provide a complete methodology, $textitStochastic localization via Iterative Posterior Sampling$ (SLIPS), to obtain approximate samples of this dynamics, and as a byproduct, samples from the target distribution.
We illustrate the benefits and applicability of SLIPS on several benchmarks of multi-modal distributions, including mixtures in increasing dimensions, logistic regression and high-dimensional field system from statistical-mechanics.
- Score: 2.1383136715042417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building upon score-based learning, new interest in stochastic localization techniques has recently emerged. In these models, one seeks to noise a sample from the data distribution through a stochastic process, called observation process, and progressively learns a denoiser associated to this dynamics. Apart from specific applications, the use of stochastic localization for the problem of sampling from an unnormalized target density has not been explored extensively. This work contributes to fill this gap. We consider a general stochastic localization framework and introduce an explicit class of observation processes, associated with flexible denoising schedules. We provide a complete methodology, $\textit{Stochastic Localization via Iterative Posterior Sampling}$ (SLIPS), to obtain approximate samples of this dynamics, and as a by-product, samples from the target distribution. Our scheme is based on a Markov chain Monte Carlo estimation of the denoiser and comes with detailed practical guidelines. We illustrate the benefits and applicability of SLIPS on several benchmarks of multi-modal distributions, including Gaussian mixtures in increasing dimensions, Bayesian logistic regression and a high-dimensional field system from statistical-mechanics.
Related papers
- Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Sampling, Diffusions, and Stochastic Localization [10.368585938419619]
Diffusions are a successful technique to sample from high-dimensional distributions.
localization is a technique to prove mixing of Markov Chains and other functional inequalities in high dimension.
An algorithmic version of localization was introduced in [EAMS2022] to obtain an algorithm that samples from certain statistical mechanics models.
arXiv Detail & Related papers (2023-05-18T04:01:40Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Approximate sampling and estimation of partition functions using neural
networks [0.0]
We show how variational autoencoders (VAEs) can be applied to this task.
We invert the logic and train the VAE to fit a simple and tractable distribution, on the assumption of a complex and intractable latent distribution, specified up to normalization.
This procedure constructs approximations without the use of training data or Markov chain Monte Carlo sampling.
arXiv Detail & Related papers (2022-09-21T15:16:45Z) - Markov Chain Monte Carlo for Continuous-Time Switching Dynamical Systems [26.744964200606784]
We propose a novel inference algorithm utilizing a Markov Chain Monte Carlo approach.
The presented Gibbs sampler allows to efficiently obtain samples from the exact continuous-time posterior processes.
arXiv Detail & Related papers (2022-05-18T09:03:00Z) - Oops I Took A Gradient: Scalable Sampling for Discrete Distributions [53.3142984019796]
We show that this approach outperforms generic samplers in a number of difficult settings.
We also demonstrate the use of our improved sampler for training deep energy-based models on high dimensional discrete data.
arXiv Detail & Related papers (2021-02-08T20:08:50Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
Hybrid Monte Carlo is a powerful Markov Chain Monte Carlo method for sampling from complex continuous distributions.
We introduce a new approach based on augmenting Monte Carlo methods with SurVAE Flows to sample from discrete distributions.
We demonstrate the efficacy of our algorithm on a range of examples from statistics, computational physics and machine learning, and observe improvements compared to alternative algorithms.
arXiv Detail & Related papers (2021-02-04T02:21:08Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
Conventional approaches for simulating Gaussian process posteriors view samples as draws from marginal distributions of process values at finite sets of input locations.
This distribution-centric characterization leads to generative strategies that scale cubically in the size of the desired random vector.
We show how this pathwise interpretation of conditioning gives rise to a general family of approximations that lend themselves to efficiently sampling Gaussian process posteriors.
arXiv Detail & Related papers (2020-11-08T17:09:37Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
We propose an easy-to-use and general-purpose approach for fast posterior sampling.
We demonstrate how decoupled sample paths accurately represent Gaussian process posteriors at a fraction of the usual cost.
arXiv Detail & Related papers (2020-02-21T14:03:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.