論文の概要: TimeSeriesBench: An Industrial-Grade Benchmark for Time Series Anomaly Detection Models
- arxiv url: http://arxiv.org/abs/2402.10802v3
- Date: Tue, 3 Sep 2024 02:37:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 19:31:47.198040
- Title: TimeSeriesBench: An Industrial-Grade Benchmark for Time Series Anomaly Detection Models
- Title(参考訳): TimeSeriesBench: 時系列異常検出モデルのためのインダストリアルグレードベンチマーク
- Authors: Haotian Si, Jianhui Li, Changhua Pei, Hang Cui, Jingwen Yang, Yongqian Sun, Shenglin Zhang, Jingjing Li, Haiming Zhang, Jing Han, Dan Pei, Gaogang Xie,
- Abstract要約: 時系列異常検出(TSAD)は実世界の応用により注目されている。
TSADが現実のデプロイメントの要件を満たすことができるかどうかを検証する効果的な方法はない。
本稿では,既存のアルゴリズムの性能を評価するため,産業用ベンチマークTimeSeriesBenchを提案する。
- 参考スコア(独自算出の注目度): 21.658019069964755
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series anomaly detection (TSAD) has gained significant attention due to its real-world applications to improve the stability of modern software systems. However, there is no effective way to verify whether they can meet the requirements for real-world deployment. Firstly, current algorithms typically train a specific model for each time series. Maintaining such many models is impractical in a large-scale system with tens of thousands of curves. The performance of using merely one unified model to detect anomalies remains unknown. Secondly, most TSAD models are trained on the historical part of a time series and are tested on its future segment. In distributed systems, however, there are frequent system deployments and upgrades, with new, previously unseen time series emerging daily. The performance of testing newly incoming unseen time series on current TSAD algorithms remains unknown. Lastly, the assumptions of the evaluation metrics in existing benchmarks are far from practical demands. To solve the above-mentioned problems, we propose an industrial-grade benchmark TimeSeriesBench. We assess the performance of existing algorithms across more than 168 evaluation settings and provide comprehensive analysis for the future design of anomaly detection algorithms. An industrial dataset is also released along with TimeSeriesBench.
- Abstract(参考訳): 時系列異常検出(TSAD)は、現代のソフトウェアシステムの安定性を改善するための実世界の応用により、注目されている。
しかし、現実のデプロイメントの要件を満たすことができるかどうかを検証する効果的な方法はない。
第一に、現在のアルゴリズムは通常、時系列ごとに特定のモデルを訓練する。
このようなモデルを維持することは、数万の曲線を持つ大規模システムでは現実的ではない。
1つの統一モデルで異常を検知する性能は未だ不明である。
第二に、ほとんどのTSADモデルは時系列の歴史的部分で訓練され、将来のセグメントでテストされる。
しかし、分散システムでは、システムデプロイメントやアップグレードが頻繁に行われ、新しい、以前は目に見えない新しい時系列が毎日現れています。
現在のTSADアルゴリズムで新たに入ってくる未確認時系列をテストする性能は未だ不明である。
最後に、既存のベンチマークにおける評価指標の仮定は、実際的な要求には程遠い。
以上の問題を解決するために,産業用ベンチマークTimeSeriesBenchを提案する。
我々は、168以上の評価設定で既存のアルゴリズムの性能を評価し、将来的な異常検出アルゴリズムの設計を包括的に分析する。
TimeSeriesBenchとともに、産業データセットもリリースされている。
関連論文リスト
- Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
時系列データは、現実世界のシナリオにおいて非常に重要である。
近年、時系列コミュニティで顕著なブレークスルーが見られた。
多様な分析タスクのためのディープ時系列モデルの公正なベンチマークとして、時系列ライブラリ(TSLib)をリリースします。
論文 参考訳(メタデータ) (2024-07-18T08:31:55Z) - TSI-Bench: Benchmarking Time Series Imputation [52.27004336123575]
TSI-Benchは、ディープラーニング技術を利用した時系列計算のための総合ベンチマークスイートである。
TSI-Benchパイプラインは、実験的な設定を標準化し、計算アルゴリズムの公平な評価を可能にする。
TSI-Benchは、計算目的のために時系列予測アルゴリズムを調整するための体系的なパラダイムを革新的に提供する。
論文 参考訳(メタデータ) (2024-06-18T16:07:33Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - OrionBench: Benchmarking Time Series Generative Models in the Service of the End-User [8.05635934199494]
OrionBenchは、教師なし時系列異常検出モデルのための継続的ベンチマークフレームワークである。
OrionBenchの使用方法と,4年間で公開された17リリースにわたるパイプラインのパフォーマンスについて紹介する。
論文 参考訳(メタデータ) (2023-10-26T19:43:16Z) - TFAD: A Decomposition Time Series Anomaly Detection Architecture with
Time-Frequency Analysis [12.867257563413972]
時系列異常検出は、複雑な時間的依存と限られたラベルデータのために難しい問題である。
本稿では,時間領域と周波数領域の両方を利用した時間周波数解析に基づく時系列異常検出モデル(TFAD)を提案する。
論文 参考訳(メタデータ) (2022-10-18T09:08:57Z) - Multi-scale Anomaly Detection for Big Time Series of Industrial Sensors [50.6434162489902]
そこで本研究では,自然にスムーズな時系列を復号・符号化する手法であるMissGANを提案する。
MissGANはラベルを必要としないし、通常のインスタンスのラベルだけを必要とするので、広く適用できます。
論文 参考訳(メタデータ) (2022-04-18T04:34:15Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
本研究は、時系列異常検出のための新しい生成モデルであるDGHLを提示する。
トップダウンの畳み込みネットワークは、新しい階層的な潜在空間を時系列ウィンドウにマッピングし、時間ダイナミクスを利用して情報を効率的にエンコードする。
提案手法は,4つのベンチマーク・データセットにおいて,現在の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-02-15T17:19:44Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - NVAE-GAN Based Approach for Unsupervised Time Series Anomaly Detection [19.726089445453734]
時系列異常検出は、多くの業界で一般的だが難しい課題である。
実世界から収集されたノイズデータから,時系列の異常を高精度に検出することは困難である。
我々は異常検出モデルを提案する:時系列から画像VAE (T2IVAE)
論文 参考訳(メタデータ) (2021-01-08T08:35:15Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - RobustTAD: Robust Time Series Anomaly Detection via Decomposition and
Convolutional Neural Networks [37.16594704493679]
本稿では,ロバスト時系列異常検出フレームワークRobustTADを提案する。
時系列データのために、堅牢な季節差分解と畳み込みニューラルネットワークを統合する。
パブリックオンラインサービスとしてデプロイされ、Alibaba Groupのさまざまなビジネスシナリオで広く採用されている。
論文 参考訳(メタデータ) (2020-02-21T20:43:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。