Learning Goal-Conditioned Policies from Sub-Optimal Offline Data via Metric Learning
- URL: http://arxiv.org/abs/2402.10820v2
- Date: Sat, 8 Jun 2024 14:56:23 GMT
- Title: Learning Goal-Conditioned Policies from Sub-Optimal Offline Data via Metric Learning
- Authors: Alfredo Reichlin, Miguel Vasco, Hang Yin, Danica Kragic,
- Abstract summary: We address the problem of learning optimal behavior from sub-optimal datasets for goal-conditioned offline reinforcement learning.
We propose the use of metric learning to approximate the optimal value function for goal-conditioned offline RL problems.
We show that our method estimates optimal behaviors from severely sub-optimal offline datasets without suffering from out-of-distribution estimation errors.
- Score: 22.174803826742963
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the problem of learning optimal behavior from sub-optimal datasets for goal-conditioned offline reinforcement learning. To do so, we propose the use of metric learning to approximate the optimal value function for goal-conditioned offline RL problems under sparse rewards, invertible actions and deterministic transitions. We introduce distance monotonicity, a property for representations to recover optimality and propose an optimization objective that leads to such property. We use the proposed value function to guide the learning of a policy in an actor-critic fashion, a method we name MetricRL. Experimentally, we show that our method estimates optimal behaviors from severely sub-optimal offline datasets without suffering from out-of-distribution estimation errors. We demonstrate that MetricRL consistently outperforms prior state-of-the-art goal-conditioned RL methods in learning optimal policies from sub-optimal offline datasets.
Related papers
- Preference Elicitation for Offline Reinforcement Learning [59.136381500967744]
We propose Sim-OPRL, an offline preference-based reinforcement learning algorithm.
Our algorithm employs a pessimistic approach for out-of-distribution data, and an optimistic approach for acquiring informative preferences about the optimal policy.
arXiv Detail & Related papers (2024-06-26T15:59:13Z) - From Function to Distribution Modeling: A PAC-Generative Approach to
Offline Optimization [30.689032197123755]
This paper considers the problem of offline optimization, where the objective function is unknown except for a collection of offline" data examples.
Instead of learning and then optimizing the unknown objective function, we take on a less intuitive but more direct view that optimization can be thought of as a process of sampling from a generative model.
arXiv Detail & Related papers (2024-01-04T01:32:50Z) - Beyond Uniform Sampling: Offline Reinforcement Learning with Imbalanced
Datasets [53.8218145723718]
offline policy learning is aimed at learning decision-making policies using existing datasets of trajectories without collecting additional data.
We argue that when a dataset is dominated by suboptimal trajectories, state-of-the-art offline RL algorithms do not substantially improve over the average return of trajectories in the dataset.
We present a realization of the sampling strategy and an algorithm that can be used as a plug-and-play module in standard offline RL algorithms.
arXiv Detail & Related papers (2023-10-06T17:58:14Z) - Offline Policy Evaluation for Reinforcement Learning with Adaptively Collected Data [28.445166861907495]
We develop theory for the TMIS Offline Policy Evaluation (OPE) estimator.
We derive high-probability, instance-dependent bounds on its estimation error.
We also recover minimax-optimal offline learning in the adaptive setting.
arXiv Detail & Related papers (2023-06-24T21:48:28Z) - Offline RL Policies Should be Trained to be Adaptive [89.8580376798065]
We show that acting optimally in offline RL in a Bayesian sense involves solving an implicit POMDP.
As a result, optimal policies for offline RL must be adaptive, depending not just on the current state but rather all the transitions seen so far during evaluation.
We present a model-free algorithm for approximating this optimal adaptive policy, and demonstrate the efficacy of learning such adaptive policies in offline RL benchmarks.
arXiv Detail & Related papers (2022-07-05T17:58:33Z) - Offline Reinforcement Learning with Value-based Episodic Memory [19.12430651038357]
offline reinforcement learning (RL) shows promise of applying RL to real-world problems.
We propose Expectile V-Learning (EVL), which smoothly interpolates between the optimal value learning and behavior cloning.
We present a new offline method called Value-based Episodic Memory (VEM)
arXiv Detail & Related papers (2021-10-19T08:20:11Z) - OptiDICE: Offline Policy Optimization via Stationary Distribution
Correction Estimation [59.469401906712555]
We present an offline reinforcement learning algorithm that prevents overestimation in a more principled way.
Our algorithm, OptiDICE, directly estimates the stationary distribution corrections of the optimal policy.
We show that OptiDICE performs competitively with the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-21T00:43:30Z) - Behavioral Priors and Dynamics Models: Improving Performance and Domain
Transfer in Offline RL [82.93243616342275]
We introduce Offline Model-based RL with Adaptive Behavioral Priors (MABE)
MABE is based on the finding that dynamics models, which support within-domain generalization, and behavioral priors, which support cross-domain generalization, are complementary.
In experiments that require cross-domain generalization, we find that MABE outperforms prior methods.
arXiv Detail & Related papers (2021-06-16T20:48:49Z) - Representation Matters: Offline Pretraining for Sequential Decision
Making [27.74988221252854]
In this paper, we consider a slightly different approach to incorporating offline data into sequential decision-making.
We find that the use of pretraining with unsupervised learning objectives can dramatically improve the performance of policy learning algorithms.
arXiv Detail & Related papers (2021-02-11T02:38:12Z) - Is Pessimism Provably Efficient for Offline RL? [104.00628430454479]
We study offline reinforcement learning (RL), which aims to learn an optimal policy based on a dataset collected a priori.
We propose a pessimistic variant of the value iteration algorithm (PEVI), which incorporates an uncertainty quantifier as the penalty function.
arXiv Detail & Related papers (2020-12-30T09:06:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.