論文の概要: Neural machine translation of clinical procedure codes for medical
diagnosis and uncertainty quantification
- arxiv url: http://arxiv.org/abs/2402.10940v1
- Date: Wed, 7 Feb 2024 20:11:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-25 17:03:06.267338
- Title: Neural machine translation of clinical procedure codes for medical
diagnosis and uncertainty quantification
- Title(参考訳): 医療診断と不確実性定量化のための臨床手順コードのニューラルマシン翻訳
- Authors: Pei-Hung Chung, Shuhan He, Norawit Kijpaisalratana, Abdel-badih el
Ariss, Byung-Jun Yoon
- Abstract要約: 医療エントロピーの概念を導入し,ICD-9法に基づくニューラルマシン翻訳によって予測される患者の予後の不確かさを定量化する。
簡単なICD-9コードに基づいて,術式と診断シーケンスの相関が強いことを示す。
また,データ駆動アプローチにより入院時の不確実性の傾向をモデル化する有望な能力を示す。
- 参考スコア(独自算出の注目度): 2.1186715417451216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A Clinical Decision Support System (CDSS) is designed to enhance clinician
decision-making by combining system-generated recommendations with medical
expertise. Given the high costs, intensive labor, and time-sensitive nature of
medical treatments, there is a pressing need for efficient decision support,
especially in complex emergency scenarios. In these scenarios, where
information can be limited, an advanced CDSS framework that leverages AI
(artificial intelligence) models to effectively reduce diagnostic uncertainty
has utility. Such an AI-enabled CDSS framework with quantified uncertainty
promises to be practical and beneficial in the demanding context of real-world
medical care. In this study, we introduce the concept of Medical Entropy,
quantifying uncertainties in patient outcomes predicted by neural machine
translation based on the ICD-9 code of procedures. Our experimental results not
only show strong correlations between procedure and diagnosis sequences based
on the simple ICD-9 code but also demonstrate the promising capacity to model
trends of uncertainties during hospitalizations through a data-driven approach.
- Abstract(参考訳): 臨床意思決定支援システム(CDSS)は、システム生成レコメンデーションと医療専門知識を組み合わせることで、臨床の意思決定を強化するように設計されている。
高コスト、重労働、時間に敏感な医療療法を考えると、特に複雑な緊急時において、効率的な意思決定支援の必要性が高まっている。
情報を制限するシナリオでは、AI(人工知能)モデルを利用して診断の不確実性を効果的に低減する高度なCDSSフレームワークが有用である。
このような、定量化された不確実性を持つAI対応CDSSフレームワークは、現実の医療の要求された状況において実用的で有益である。
そこで本研究では,ICD-9の手順に基づくニューラルマシン翻訳によって予測される患者結果の不確実性を定量化する医療エントロピーの概念を提案する。
以上の結果から,簡単なicd-9コードに基づく手術と診断シークエンスの間に強い相関関係を示すだけでなく,データ駆動アプローチによる入院中の不確実性の傾向をモデル化する有望性を示す。
関連論文リスト
- Development of a Large Language Model-based Multi-Agent Clinical Decision Support System for Korean Triage and Acuity Scale (KTAS)-Based Triage and Treatment Planning in Emergency Departments [0.0]
本研究は, 患者トリアージ, 治療計画, 救急管理全般において, LLM駆動型CDSSを用いて, ED医師や看護師を支援することを目的とするものである。
このシステムは、Triage Nuurse、救急医、薬剤師、EDコーディネーターの4つのAIエージェントで構成されている。
トリアージアセスメントにはKTAS(Korea Triage and Acuity Scale)が組み込まれ、医薬品管理にはRxNorm APIが組み込まれている。
論文 参考訳(メタデータ) (2024-08-14T13:03:41Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
マルチモーダルICUデータを用いて病院内死亡率を予測するための,効率的で説明可能なAIソリューションを提案する。
我々は,臨床データから異種入力を受信し,意思決定を行うマルチモーダル・ラーニングを我々のフレームワークに導入する。
我々の枠組みは、医療研究において重要な要素の発見を容易にする他の臨床課題に容易に移行することができる。
論文 参考訳(メタデータ) (2023-12-29T14:28:04Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A
Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
左室容積推定は各種心血管疾患の診断・管理に重要である。
近年の機械学習、特にU-Netのような畳み込みネットワークは、医療画像の自動セグメンテーションを促進している。
本研究では,LV容積予測におけるポストホック不確実性推定のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T13:44:55Z) - Rethinking Human-AI Collaboration in Complex Medical Decision Making: A
Case Study in Sepsis Diagnosis [34.19436164837297]
我々は、最先端のAIアルゴリズムに基づいてSepsisLabを構築し、それを拡張して、セプシス開発の将来予測を予測する。
我々は、SepsisLabがAIによる敗血症診断の将来に向けて有望な人間とAIのコラボレーションパラダイムを実現することを実証した。
論文 参考訳(メタデータ) (2023-09-17T19:19:39Z) - Applying Artificial Intelligence to Clinical Decision Support in Mental
Health: What Have We Learned? [0.0]
本稿では,近年開発されたAI-CDSSであるAifred Healthを事例として,うつ病における治療の選択と管理を支援する。
我々は、このAI-CDSSの開発およびテスト中にもたらされた原則と、実装を容易にするために開発された実践的ソリューションの両方を考慮する。
論文 参考訳(メタデータ) (2023-03-06T21:40:51Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - Clinical Evidence Engine: Proof-of-Concept For A
Clinical-Domain-Agnostic Decision Support Infrastructure [26.565616653685115]
本稿では,3つの領域にまたがって,このアプローチの技術的,設計的実現可能性を示す概念実証システムを提案する。
このシステムは、BioBERTを活用すれば、長い臨床質問に基づいて、治験報告を効果的に識別することができる。
ドメインに依存しない意思決定支援基盤として、DSTやアルゴリズムに限らず、DSTの説明を設計するという考え方について議論する。
論文 参考訳(メタデータ) (2021-10-31T23:21:25Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
医用シーケンシャルな意思決定に特化して設計された新しいベンチマークスイートを提案する。
Medkit-Learn(ing) Environmentは、高忠実度合成医療データに簡単かつ簡単にアクセスできるPythonパッケージである。
論文 参考訳(メタデータ) (2021-06-08T10:38:09Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。