Building Trees for Probabilistic Prediction via Scoring Rules
- URL: http://arxiv.org/abs/2402.11052v1
- Date: Fri, 16 Feb 2024 20:04:13 GMT
- Title: Building Trees for Probabilistic Prediction via Scoring Rules
- Authors: Sara Shashaani, Ozge Surer, Matthew Plumlee, Seth Guikema
- Abstract summary: We study modifying a tree to produce nonparametric predictive distributions.
We find the standard method for building trees may not result in good predictive distributions.
We propose changing the splitting criteria for trees to one based on proper scoring rules.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decision trees built with data remain in widespread use for nonparametric
prediction. Predicting probability distributions is preferred over point
predictions when uncertainty plays a prominent role in analysis and
decision-making. We study modifying a tree to produce nonparametric predictive
distributions. We find the standard method for building trees may not result in
good predictive distributions and propose changing the splitting criteria for
trees to one based on proper scoring rules. Analysis of both simulated data and
several real datasets demonstrates that using these new splitting criteria
results in trees with improved predictive properties considering the entire
predictive distribution.
Related papers
- Ensembles of Probabilistic Regression Trees [46.53457774230618]
Tree-based ensemble methods have been successfully used for regression problems in many applications and research studies.
We study ensemble versions of probabilisticregression trees that provide smooth approximations of the objective function by assigningeach observation to each region with respect to a probability distribution.
arXiv Detail & Related papers (2024-06-20T06:51:51Z) - Why do Random Forests Work? Understanding Tree Ensembles as
Self-Regularizing Adaptive Smoothers [68.76846801719095]
We argue that the current high-level dichotomy into bias- and variance-reduction prevalent in statistics is insufficient to understand tree ensembles.
We show that forests can improve upon trees by three distinct mechanisms that are usually implicitly entangled.
arXiv Detail & Related papers (2024-02-02T15:36:43Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Prediction Algorithms Achieving Bayesian Decision Theoretical Optimality
Based on Decision Trees as Data Observation Processes [1.2774526936067927]
This paper uses trees to represent data observation processes behind given data.
We derive the statistically optimal prediction, which is robust against overfitting.
We solve this by a Markov chain Monte Carlo method, whose step size is adaptively tuned according to a posterior distribution for the trees.
arXiv Detail & Related papers (2023-06-12T12:14:57Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - On Uncertainty Estimation by Tree-based Surrogate Models in Sequential
Model-based Optimization [13.52611859628841]
We revisit various ensembles of randomized trees to investigate their behavior in the perspective of prediction uncertainty estimation.
We propose a new way of constructing an ensemble of randomized trees, referred to as BwO forest, where bagging with oversampling is employed to construct bootstrapped samples.
Experimental results demonstrate the validity and good performance of BwO forest over existing tree-based models in various circumstances.
arXiv Detail & Related papers (2022-02-22T04:50:37Z) - Achieving Reliable Causal Inference with Data-Mined Variables: A Random
Forest Approach to the Measurement Error Problem [1.5749416770494704]
A common empirical strategy involves the application of predictive modeling techniques to'mine' variables of interest from available data.
Recent work highlights that, because the predictions from machine learning models are inevitably imperfect, econometric analyses based on the predicted variables are likely to suffer from bias due to measurement error.
We propose a novel approach to mitigate these biases, leveraging the ensemble learning technique known as the random forest.
arXiv Detail & Related papers (2020-12-19T21:48:23Z) - Handling Missing Data in Decision Trees: A Probabilistic Approach [41.259097100704324]
We tackle the problem of handling missing data in decision trees by taking a probabilistic approach.
We use tractable density estimators to compute the "expected prediction" of our models.
At learning time, we fine-tune parameters of already learned trees by minimizing their "expected prediction loss"
arXiv Detail & Related papers (2020-06-29T19:54:54Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
We propose a novel balance-subsampled stable prediction (BSSP) algorithm based on the theory of fractional factorial design.
A design-theoretic analysis shows that the proposed method can reduce the confounding effects among predictors induced by the distribution shift.
Numerical experiments on both synthetic and real-world data sets demonstrate that our BSSP algorithm significantly outperforms the baseline methods for stable prediction across unknown test data.
arXiv Detail & Related papers (2020-06-08T07:01:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.