On Uncertainty Estimation by Tree-based Surrogate Models in Sequential
Model-based Optimization
- URL: http://arxiv.org/abs/2202.10669v1
- Date: Tue, 22 Feb 2022 04:50:37 GMT
- Title: On Uncertainty Estimation by Tree-based Surrogate Models in Sequential
Model-based Optimization
- Authors: Jungtaek Kim, Seungjin Choi
- Abstract summary: We revisit various ensembles of randomized trees to investigate their behavior in the perspective of prediction uncertainty estimation.
We propose a new way of constructing an ensemble of randomized trees, referred to as BwO forest, where bagging with oversampling is employed to construct bootstrapped samples.
Experimental results demonstrate the validity and good performance of BwO forest over existing tree-based models in various circumstances.
- Score: 13.52611859628841
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential model-based optimization sequentially selects a candidate point by
constructing a surrogate model with the history of evaluations, to solve a
black-box optimization problem. Gaussian process (GP) regression is a popular
choice as a surrogate model, because of its capability of calculating
prediction uncertainty analytically. On the other hand, an ensemble of
randomized trees is another option and has practical merits over GPs due to its
scalability and easiness of handling continuous/discrete mixed variables. In
this paper we revisit various ensembles of randomized trees to investigate
their behavior in the perspective of prediction uncertainty estimation. Then,
we propose a new way of constructing an ensemble of randomized trees, referred
to as BwO forest, where bagging with oversampling is employed to construct
bootstrapped samples that are used to build randomized trees with random
splitting. Experimental results demonstrate the validity and good performance
of BwO forest over existing tree-based models in various circumstances.
Related papers
- Ensembles of Probabilistic Regression Trees [46.53457774230618]
Tree-based ensemble methods have been successfully used for regression problems in many applications and research studies.
We study ensemble versions of probabilisticregression trees that provide smooth approximations of the objective function by assigningeach observation to each region with respect to a probability distribution.
arXiv Detail & Related papers (2024-06-20T06:51:51Z) - Adaptive Split Balancing for Optimal Random Forest [8.916614661563893]
We propose a new random forest algorithm that constructs the trees using a novel adaptive split-balancing method.
Our method achieves optimality in simple, smooth scenarios while adaptively learning the tree structure from the data.
arXiv Detail & Related papers (2024-02-17T09:10:40Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - GP-BART: a novel Bayesian additive regression trees approach using
Gaussian processes [1.03590082373586]
The GP-BART model is an extension of BART which addresses the limitation by assuming GP priors for the predictions of each terminal node among all trees.
The model's effectiveness is demonstrated through applications to simulated and real-world data, surpassing the performance of traditional modeling approaches in various scenarios.
arXiv Detail & Related papers (2022-04-05T11:18:44Z) - Distributional Gradient Boosting Machines [77.34726150561087]
Our framework is based on XGBoost and LightGBM.
We show that our framework achieves state-of-the-art forecast accuracy.
arXiv Detail & Related papers (2022-04-02T06:32:19Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
Probabilistic Gradient Boosting Machines (PGBM) is a method to create probabilistic predictions with a single ensemble of decision trees.
We empirically demonstrate the advantages of PGBM compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-03T08:32:13Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Improved Weighted Random Forest for Classification Problems [3.42658286826597]
The key to make well-performing ensemble model is in the diversity of the base models.
We propose several algorithms that intend to modify the weighting strategy of regular random forest.
The proposed models are able to introduce significant improvements compared to regular random forest.
arXiv Detail & Related papers (2020-09-01T16:08:45Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z) - Multivariate Boosted Trees and Applications to Forecasting and Control [0.0]
Gradient boosted trees are non-parametric regressors that exploit sequential model fitting and gradient descent to minimize a specific loss function.
In this paper, we present a computationally efficient algorithm for fitting multivariate boosted trees.
arXiv Detail & Related papers (2020-03-08T19:26:59Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.