論文の概要: Model Editing by Standard Fine-Tuning
- arxiv url: http://arxiv.org/abs/2402.11078v3
- Date: Mon, 3 Jun 2024 05:39:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 18:33:51.129126
- Title: Model Editing by Standard Fine-Tuning
- Title(参考訳): 標準微調整によるモデル編集
- Authors: Govind Gangadhar, Karl Stratos,
- Abstract要約: 標準的な微調整だけで2つの小さな修正を加えて、競合するモデル編集性能が得られることを示す。
まず、全確率ではなく条件付き確率を最適化する。
第二に、ランダムに言い換えられた編集プロンプトの訓練が一般化を促進するのに加え、ランダムまたは類似の未編集事実を訓練して局所性を奨励する。
- 参考スコア(独自算出の注目度): 9.344592764040964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Standard fine-tuning is considered not as effective as specialized methods for model editing due to its comparatively poor performance. However, it is simple, agnostic to the architectural details of the model being edited, and able to leverage advances in standard training techniques with no additional work (e.g., black-box PEFT for computational efficiency), making it an appealing choice for a model editor. In this work, we show that standard fine-tuning alone can yield competitive model editing performance with two minor modifications. First, we optimize the conditional likelihood rather than the full likelihood. Second, in addition to the typical practice of training on randomly paraphrased edit prompts to encourage generalization, we also train on random or similar unedited facts to encourage locality. Our experiments on the ZsRE and CounterFact datasets demonstrate that these simple modifications allow standard fine-tuning to match or outperform highly specialized editors in terms of edit score.
- Abstract(参考訳): 標準的な微調整は、比較的低い性能のため、モデル編集の特殊な方法ほど効果的ではないと考えられている。
しかし、編集されるモデルのアーキテクチャの詳細に従わず、追加の作業(例えば、計算効率のブラックボックスPEFT)を伴わずに標準訓練技術の進歩を活用できるため、モデルエディターにとって魅力的な選択である。
本研究では,標準的な微調整だけで2つの小さな修正を加えて,競争力のあるモデル編集性能が得られることを示す。
まず、全確率ではなく条件付き確率を最適化する。
第二に、ランダムに言い換えられた編集プロンプトの訓練が一般化を促進するのに加え、ランダムまたは類似の未編集事実を訓練して局所性を奨励する。
ZsREおよびCounterFactデータセットに対する実験により、これらの単純な修正により、編集スコアの点から、標準の微調整が高度に専門化されたエディタに適合または優れることを示す。
関連論文リスト
- The Butterfly Effect of Model Editing: Few Edits Can Trigger Large Language Models Collapse [58.0132400208411]
単一の編集でさえモデル崩壊を引き起こし、様々なベンチマークタスクで大幅なパフォーマンス低下を示す。
編集後の大規模言語モデルのベンチマークは、過激な時間とリソース集約である。
我々は、GPT-3.5を用いて、ハードケースに基づいた新しいデータセット、HardEditを開発した。
論文 参考訳(メタデータ) (2024-02-15T01:50:38Z) - Model Editing at Scale leads to Gradual and Catastrophic Forgetting [2.569159339315845]
本稿では,ROMEとMEMITの2つの手法に焦点をあてて,現在のモデル編集手法を大規模に評価する。
モデルが複数の事実と逐次的に編集されるにつれて、以前編集された事実と下流タスクの実行能力を常に忘れていることがわかった。
論文 参考訳(メタデータ) (2024-01-15T03:57:15Z) - Model Editing Harms General Abilities of Large Language Models: Regularization to the Rescue [122.20016030723043]
モデル編集は、大きな言語モデル(LLM)を編集し、リソース集約的な再学習なしに幻覚を緩和する技術である。
現在のモデル編集方法は、特定の領域におけるモデルの振る舞いを効果的に修正することができる。
彼らはしばしば、LLMの一般的な能力に対する意図しない副作用の可能性を見落としている。
論文 参考訳(メタデータ) (2024-01-09T18:03:15Z) - Edit at your own risk: evaluating the robustness of edited models to
distribution shifts [0.0]
モデル編集がモデルの一般的なロバスト性や、編集対象の特定の動作のロバスト性にどのように影響するかを検討する。
編集は一般的な堅牢性を低下させる傾向があるが、劣化の程度は編集アルゴリズムと選択した層に依存している。
これらの観測によって動機付けられた新しいモデル編集アルゴリズムである1-層 (1-LI) を導入し、重み空間を用いて編集タスクの精度と一般的なロバスト性の間のトレードオフをナビゲートする。
論文 参考訳(メタデータ) (2023-02-28T19:41:37Z) - Aging with GRACE: Lifelong Model Editing with Discrete Key-Value
Adaptors [53.819805242367345]
本稿では,展開モデルのストリーミングエラーにスポットフィックスを実装した生涯モデル編集手法であるGRACEを提案する。
GRACEはトレーニング済みモデルの潜在空間に新しいマッピングを記述し、モデルの重みを変更することなく、個別にローカルな編集のコードブックを作成する。
T5,BERT,GPTモデルを用いた実験では,非表示入力に一般化しつつ,編集および保持におけるGRACEの最先端性能を示す。
論文 参考訳(メタデータ) (2022-11-20T17:18:22Z) - EditEval: An Instruction-Based Benchmark for Text Improvements [73.5918084416016]
編集機能の自動評価のためのインストラクションベース、ベンチマーク、評価スイートであるEditEvalを提示する。
InstructGPTとPEERが最良であることを示す事前学習モデルをいくつか評価するが,ほとんどのベースラインは教師付きSOTA以下である。
我々の分析は、タスクの編集によく使われるメトリクスが必ずしも相関しているとは限らないことを示し、最高の性能を持つプロンプトに対する最適化は、必ずしも異なるモデルに対して強い堅牢性を持つとは限らないことを示唆している。
論文 参考訳(メタデータ) (2022-09-27T12:26:05Z) - Memory-Based Model Editing at Scale [102.28475739907498]
既存のモデルエディタは、編集対象のスコープを正確にモデル化するのに苦労する。
SERAC(Retrieval-Augmented Counterfactal Model)を用いた半パラメトリック編集を提案する。
SERACは、編集を明示的なメモリに格納し、必要に応じてベースモデルの予測を変更できるように、それらを推論することを学ぶ。
論文 参考訳(メタデータ) (2022-06-13T23:40:34Z) - Fast Model Editing at Scale [77.69220974621425]
MEND(Gradient Decomposition)を用いたモデルエディタネットワークを提案する。
MENDは、所望の入力出力ペアを使って、訓練済みのモデルに高速で局所的な編集を行う、小さな補助的な編集ネットワークの集合である。
MENDは100億以上のパラメータモデルであっても、1日以内で1つのGPUでトレーニングすることができる。
論文 参考訳(メタデータ) (2021-10-21T17:41:56Z) - A Structural Model for Contextual Code Changes [20.185486717922615]
部分的に編集されたコードスニペットが与えられた場合、私たちのゴールは、スニペットの残りの部分に対する編集の完了を予測することです。
提案モデルでは,最先端のシーケンシャルモデルよりも28%,編集コードの生成を学習する構文モデルよりも2倍高い精度を実現している。
論文 参考訳(メタデータ) (2020-05-27T07:16:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。