BlendFilter: Advancing Retrieval-Augmented Large Language Models via Query Generation Blending and Knowledge Filtering
- URL: http://arxiv.org/abs/2402.11129v3
- Date: Tue, 15 Oct 2024 20:55:29 GMT
- Title: BlendFilter: Advancing Retrieval-Augmented Large Language Models via Query Generation Blending and Knowledge Filtering
- Authors: Haoyu Wang, Ruirui Li, Haoming Jiang, Jinjin Tian, Zhengyang Wang, Chen Luo, Xianfeng Tang, Monica Cheng, Tuo Zhao, Jing Gao,
- Abstract summary: BlendFilter is a novel approach that elevates retrieval-augmented Large Language Models by integrating query generation blending with knowledge filtering.
We conduct extensive experiments on three open-domain question answering benchmarks, and the findings clearly indicate that our innovative BlendFilter surpasses state-of-the-art baselines significantly.
- Score: 58.403898834018285
- License:
- Abstract: Retrieval-augmented Large Language Models (LLMs) offer substantial benefits in enhancing performance across knowledge-intensive scenarios. However, these methods often face challenges with complex inputs and encounter difficulties due to noisy knowledge retrieval, notably hindering model effectiveness. To address this issue, we introduce BlendFilter, a novel approach that elevates retrieval-augmented LLMs by integrating query generation blending with knowledge filtering. BlendFilter proposes the blending process through its query generation method, which integrates both external and internal knowledge augmentation with the original query, ensuring comprehensive information gathering. Additionally, our distinctive knowledge filtering module capitalizes on the intrinsic capabilities of the LLM, effectively eliminating extraneous data. We conduct extensive experiments on three open-domain question answering benchmarks, and the findings clearly indicate that our innovative BlendFilter surpasses state-of-the-art baselines significantly.
Related papers
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - FltLM: An Intergrated Long-Context Large Language Model for Effective Context Filtering and Understanding [32.197113821638936]
We propose a novel integrated Long-Context Large Language Model (FltLM)
FltLM incorporates a context filter with a soft mask mechanism, identifying and dynamically excluding irrelevant content to concentrate on pertinent information.
Experimental results demonstrate that FltLM significantly outperforms supervised fine-tuning and retrieval-based methods in complex QA scenarios.
arXiv Detail & Related papers (2024-10-09T13:47:50Z) - Vietnamese Legal Information Retrieval in Question-Answering System [0.0]
Retrieval Augmented Generation (RAG) has gained significant recognition for enhancing the capabilities of large language models (LLMs)
However, RAG often fall short when applied to the Vietnamese language due to several challenges.
This report introduces our three main modifications taken to address these challenges.
arXiv Detail & Related papers (2024-09-05T02:34:05Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - An Information Bottleneck Perspective for Effective Noise Filtering on Retrieval-Augmented Generation [35.76451156732993]
We introduce the information bottleneck theory into retrieval-augmented generation.
Our approach involves the filtration of noise by simultaneously maximizing the mutual information between compression and ground output.
We derive the formula of information bottleneck to facilitate its application in novel comprehensive evaluations.
arXiv Detail & Related papers (2024-06-03T17:31:06Z) - IM-RAG: Multi-Round Retrieval-Augmented Generation Through Learning Inner Monologues [10.280113107290067]
The IM-RAG approach integrates Information Retrieval systems with Large Language Models (LLMs) to support multi-round RAG.
The entire IM process is optimized via Reinforcement Learning (RL) where a Progress Tracker is incorporated to provide mid-step rewards.
The results show that our approach achieves state-of-the-art (SOTA) performance while providing high flexibility in integrating IR modules.
arXiv Detail & Related papers (2024-05-15T12:41:20Z) - Retrieve Only When It Needs: Adaptive Retrieval Augmentation for Hallucination Mitigation in Large Language Models [68.91592125175787]
Hallucinations pose a significant challenge for the practical implementation of large language models (LLMs)
We present Rowen, a novel approach that enhances LLMs with a selective retrieval augmentation process tailored to address hallucinations.
arXiv Detail & Related papers (2024-02-16T11:55:40Z) - Learning to Filter Context for Retrieval-Augmented Generation [75.18946584853316]
Generation models are required to generate outputs given partially or entirely irrelevant passages.
FILCO identifies useful context based on lexical and information-theoretic approaches.
It trains context filtering models that can filter retrieved contexts at test time.
arXiv Detail & Related papers (2023-11-14T18:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.