Contrastive Instruction Tuning
- URL: http://arxiv.org/abs/2402.11138v2
- Date: Thu, 6 Jun 2024 06:03:34 GMT
- Title: Contrastive Instruction Tuning
- Authors: Tianyi Lorena Yan, Fei Wang, James Y. Huang, Wenxuan Zhou, Fan Yin, Aram Galstyan, Wenpeng Yin, Muhao Chen,
- Abstract summary: We propose Contrastive Instruction Tuning to maximize the similarity between semantically equivalent instruction-instance pairs.
Experiments on the PromptBench benchmark show that CoIN consistently improves LLMs' robustness to unseen instructions with variations across character, word, sentence, and semantic levels by an average of +2.5% in accuracy.
- Score: 61.97704869248903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instruction tuning has been used as a promising approach to improve the performance of large language models (LLMs) on unseen tasks. However, current LLMs exhibit limited robustness to unseen instructions, generating inconsistent outputs when the same instruction is phrased with slightly varied forms or language styles. This behavior indicates LLMs' lack of robustness to textual variations and generalizability to unseen instructions, potentially leading to trustworthiness issues. Accordingly, we propose Contrastive Instruction Tuning, which maximizes the similarity between the hidden representations of semantically equivalent instruction-instance pairs while minimizing the similarity between semantically different ones. To facilitate this approach, we augment the existing FLAN collection by paraphrasing task instructions. Experiments on the PromptBench benchmark show that CoIN consistently improves LLMs' robustness to unseen instructions with variations across character, word, sentence, and semantic levels by an average of +2.5% in accuracy. Code is available at https://github.com/luka-group/CoIN.
Related papers
- What Did I Do Wrong? Quantifying LLMs' Sensitivity and Consistency to Prompt Engineering [8.019873464066308]
We introduce two metrics for classification tasks, namely sensitivity and consistency.
sensitivity measures changes of predictions across rephrasings of the prompt.
Instead, consistency measures how predictions vary across rephrasings for elements of the same class.
arXiv Detail & Related papers (2024-06-18T06:59:24Z) - Enhancing and Assessing Instruction-Following with Fine-Grained Instruction Variants [28.691691883519542]
We introduce a technique that decomposes complex instructions into simpler sub-components, modifies these, and reconstructs them into new variants.
Based on DeMoRecon, we developed the FGIV dataset which contains fine-grained instruction variants of 1,773 seed instructions.
Our findings show that LLMs fine-tuned with FGIV will gain significant performance boost on both ours and commonly used instructions-following benchmarks.
arXiv Detail & Related papers (2024-06-17T08:08:11Z) - Set-Based Prompting: Provably Solving the Language Model Order Dependency Problem [18.020492646988746]
We present Set-Based Prompting, a technique that guarantees the output of an LLM will not have order dependence on a specified set of sub-sequences.
Despite our inputs being out of distribution, the impact on expected accuracy is small, where the expectation is over the order of uniformly chosen shuffling of the candidate responses.
arXiv Detail & Related papers (2024-06-04T16:09:13Z) - Unveiling the Lexical Sensitivity of LLMs: Combinatorial Optimization for Prompt Enhancement [11.363521189714504]
We show that large language models (LLMs) are over-sensitive to lexical variations in task instructions.
We propose a black-box Combinatorial Optimization framework for Prompt Lexical Enhancement (COPLE)
arXiv Detail & Related papers (2024-05-31T08:53:59Z) - Prompt Highlighter: Interactive Control for Multi-Modal LLMs [50.830448437285355]
This study targets a critical aspect of multi-modal LLMs' (LLMs&VLMs) inference: explicit controllable text generation.
We introduce a novel inference method, Prompt Highlighter, which enables users to highlight specific prompt spans to interactively control the focus during generation.
We find that, during inference, guiding the models with highlighted tokens through the attention weights leads to more desired outputs.
arXiv Detail & Related papers (2023-12-07T13:53:29Z) - From Language Modeling to Instruction Following: Understanding the Behavior Shift in LLMs after Instruction Tuning [63.63840740526497]
We investigate how instruction tuning adjusts pre-trained models with a focus on intrinsic changes.
The impact of instruction tuning is then studied by comparing the explanations derived from the pre-trained and instruction-tuned models.
Our findings reveal three significant impacts of instruction tuning.
arXiv Detail & Related papers (2023-09-30T21:16:05Z) - Instruction Position Matters in Sequence Generation with Large Language
Models [67.87516654892343]
Large language models (LLMs) are capable of performing conditional sequence generation tasks, such as translation or summarization.
We propose enhancing the instruction-following capability of LLMs by shifting the position of task instructions after the input sentences.
arXiv Detail & Related papers (2023-08-23T12:36:57Z) - Evaluating the Zero-shot Robustness of Instruction-tuned Language Models [23.488398944358643]
We find that using novel (unobserved) but appropriate instruction phrasings consistently degrades model performance.
We propose a simple method to mitigate this issue by introducing soft prompt'' embedding parameters.
We show that this method consistently improves the robustness of instruction-tuned models.
arXiv Detail & Related papers (2023-06-20T03:48:51Z) - Enhancing Large Language Models Against Inductive Instructions with
Dual-critique Prompting [55.15697111170836]
This paper reveals the behaviors of large language models (LLMs) towards textitinductive instructions and enhance their truthfulness and helpfulness accordingly.
After extensive human and automatic evaluations, we uncovered a universal vulnerability among LLMs in processing inductive instructions.
We identify that different inductive styles affect the models' ability to identify the same underlying errors, and the complexity of the underlying assumptions also influences the model's performance.
arXiv Detail & Related papers (2023-05-23T06:38:20Z) - Alleviating Over-smoothing for Unsupervised Sentence Representation [96.19497378628594]
We present a Simple method named Self-Contrastive Learning (SSCL) to alleviate this issue.
Our proposed method is quite simple and can be easily extended to various state-of-the-art models for performance boosting.
arXiv Detail & Related papers (2023-05-09T11:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.