論文の概要: PEDANTS (Precise Evaluations of Diverse Answer Nominee Text for Skinflints): Efficient Evaluation Analysis and Benchmarking for Open-Domain Question Answering
- arxiv url: http://arxiv.org/abs/2402.11161v2
- Date: Sun, 7 Jul 2024 01:14:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 02:38:52.667530
- Title: PEDANTS (Precise Evaluations of Diverse Answer Nominee Text for Skinflints): Efficient Evaluation Analysis and Benchmarking for Open-Domain Question Answering
- Title(参考訳): PEDANTS (Precise Evaluations of Diverse Answer Nominee Text for Skinflints):オープンドメイン質問応答のための効率的な評価分析とベンチマーク
- Authors: Zongxia Li, Ishani Mondal, Yijun Liang, Huy Nghiem, Jordan Lee Boyd-Graber,
- Abstract要約: 人間のQAコミュニティから採用されているマシンQAを評価するためのガイドラインとデータセットを提供する。
また、正確なマッチングやニューラル手法よりも、より効率的で、低リソースで、解釈可能なQA評価手法を提案する。
- 参考スコア(独自算出の注目度): 10.367359022491181
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Question answering (QA) can only make progress if we know if an answer is correct, but for many of the most challenging and interesting QA examples, current efficient answer correctness (AC) metrics do not align with human judgments, particularly verbose, free-form answers from large language models (LLMs). There are two challenges: a lack of diverse evaluation data and that models are too big and non-transparent; LLM-based scorers correlate better with humans, but this expensive task has only been tested on limited QA datasets. We rectify these issues by providing guidelines and datasets for evaluating machine QA adopted from human QA community. We also propose an efficient, low-resource, and interpretable QA evaluation method more stable than an exact match and neural methods.
- Abstract(参考訳): 質問応答(QA)は、答えが正しいかどうかを知る場合にのみ進行するが、最も困難で興味深いQAの例では、現在の効率的な回答正当性(AC)メトリクスは、人間の判断、特に大きな言語モデル(LLM)からの冗長で自由な回答と一致しない。
多様な評価データの欠如と、モデルが大きすぎて透明ではないこと、LLMベースのスコアラが人間とよりよく相関していること、この高価なタスクは限定的なQAデータセットでのみテストされていること、の2つの課題がある。
我々は、人間のQAコミュニティから採用されているマシンQAを評価するためのガイドラインとデータセットを提供することで、これらの問題を是正する。
また、正確なマッチングやニューラル手法よりも、より効率的で、低リソースで、解釈可能なQA評価手法を提案する。
関連論文リスト
- RAG-QA Arena: Evaluating Domain Robustness for Long-form Retrieval Augmented Question Answering [61.19126689470398]
Long-form RobustQA (LFRQA)は、7つの異なるドメインにわたる26Kクエリと大きなコーパスをカバーする新しいデータセットである。
RAG-QAアリーナと人間の回答品質判断は高い相関関係にあることを示す。
最も競争力のあるLLMの回答の41.3%のみがLFRQAの回答に好まれており、RAG-QAアリーナは将来の研究の挑戦的な評価プラットフォームであることを示している。
論文 参考訳(メタデータ) (2024-07-19T03:02:51Z) - CFMatch: Aligning Automated Answer Equivalence Evaluation with Expert Judgments For Open-Domain Question Answering [14.366087533102656]
質問応答(QA)は、答えが正しいかどうかを知る場合にのみ進行する。
回答等価性(AE)を決定するための現在の評価基準は、しばしば人間の判断と一致しない。
論文 参考訳(メタデータ) (2024-01-24T01:30:25Z) - SQUARE: Automatic Question Answering Evaluation using Multiple Positive
and Negative References [73.67707138779245]
SQuArE (Sentence-level QUestion AnsweRing Evaluation) という新しい評価指標を提案する。
文レベルの抽出(回答選択)と生成(GenQA)の両方のQAシステムでSQuArEを評価する。
論文 参考訳(メタデータ) (2023-09-21T16:51:30Z) - Evaluating Open-QA Evaluation [29.43815593419996]
本研究では,大規模言語モデル(LLM)の事実を直接推定できるオープン質問回答(Open QA)タスクの評価に焦点をあてる。
オープンQA内の標準回答に関連するAI生成回答の精度を評価するために,新たなタスクであるQA評価(QA-Eval)とそれに対応するデータセットEVOUNAを導入する。
論文 参考訳(メタデータ) (2023-05-21T10:40:55Z) - RoMQA: A Benchmark for Robust, Multi-evidence, Multi-answer Question
Answering [87.18962441714976]
堅牢でマルチエビデンスな質問応答(QA)のための最初のベンチマークであるRoMQAを紹介します。
我々は、最先端の大規模言語モデルをゼロショット、少数ショット、微調整設定で評価し、RoMQAが難しいことを発見した。
以上の結果から,RoMQAは大規模言語モデルにとって難しいベンチマークであり,より堅牢なQA手法を構築するための定量的なテストを提供する。
論文 参考訳(メタデータ) (2022-10-25T21:39:36Z) - Counterfactual Variable Control for Robust and Interpretable Question
Answering [57.25261576239862]
ディープニューラルネットワークに基づく質問応答(QA)モデルは、多くの場合、堅牢でも説明もできない。
本稿では、因果推論を用いてQAモデルのこのような突発的な「能力」を検証する。
本稿では,任意のショートカット相関を明示的に緩和する,CVC(Counterfactual Variable Control)という新しい手法を提案する。
論文 参考訳(メタデータ) (2020-10-12T10:09:05Z) - Generating Diverse and Consistent QA pairs from Contexts with
Information-Maximizing Hierarchical Conditional VAEs [62.71505254770827]
非構造化テキストを文脈として与えられたQAペアを生成するための条件付き変分オートエンコーダ(HCVAE)を提案する。
我々のモデルは、トレーニングにわずかなデータしか使わず、両方のタスクの全てのベースラインに対して印象的なパフォーマンス向上が得られる。
論文 参考訳(メタデータ) (2020-05-28T08:26:06Z) - Harvesting and Refining Question-Answer Pairs for Unsupervised QA [95.9105154311491]
教師なし質問回答(QA)を改善するための2つのアプローチを提案する。
まず、ウィキペディアから語彙的・構文的に異なる質問を抽出し、質問応答対のコーパスを自動的に構築する(RefQAと名づけられる)。
第2に、より適切な回答を抽出するためにQAモデルを活用し、RefQA上でデータを反復的に洗練する。
論文 参考訳(メタデータ) (2020-05-06T15:56:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。