論文の概要: KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning
over Knowledge Graph
- arxiv url: http://arxiv.org/abs/2402.11163v1
- Date: Sat, 17 Feb 2024 02:07:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-20 23:01:23.150366
- Title: KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning
over Knowledge Graph
- Title(参考訳): KG-Agent:知識グラフ上の複雑な推論のための効率的な自律エージェントフレームワーク
- Authors: Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, Yang Song, Chen Zhu, Hengshu
Zhu, Ji-Rong Wen
- Abstract要約: 我々は、KG-Agentと呼ばれる自律LLMベースのエージェントフレームワークを提案する。
KG-Agentでは、LLM、多機能ツールボックス、KGベースのエグゼキュータ、知識メモリを統合する。
有効性を保証するため、プログラム言語を利用してKG上のマルチホップ推論プロセスを定式化する。
- 参考スコア(独自算出の注目度): 134.8631016845467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we aim to improve the reasoning ability of large language
models (LLMs) over knowledge graphs (KGs) to answer complex questions. Inspired
by existing methods that design the interaction strategy between LLMs and KG,
we propose an autonomous LLM-based agent framework, called KG-Agent, which
enables a small LLM to actively make decisions until finishing the reasoning
process over KGs. In KG-Agent, we integrate the LLM, multifunctional toolbox,
KG-based executor, and knowledge memory, and develop an iteration mechanism
that autonomously selects the tool then updates the memory for reasoning over
KG. To guarantee the effectiveness, we leverage program language to formulate
the multi-hop reasoning process over the KG, and synthesize a code-based
instruction dataset to fine-tune the base LLM. Extensive experiments
demonstrate that only using 10K samples for tuning LLaMA-7B can outperform
state-of-the-art methods using larger LLMs or more data, on both in-domain and
out-domain datasets. Our code and data will be publicly released.
- Abstract(参考訳): 本稿では,知識グラフ(kgs)よりも大規模言語モデル(llm)の推論能力を向上し,複雑な質問に答えることを目的とする。
そこで我々は,LLMとKGのインタラクション戦略を設計する既存の手法に着想を得て,KG-Agentと呼ばれる自律型LLMベースのエージェントフレームワークを提案する。
KG-Agentでは、LLM、多機能ツールボックス、KGベースのエグゼキュータ、知識メモリを統合し、ツールを自律的に選択し、KG上の推論のためにメモリを更新するイテレーションメカニズムを開発する。
有効性を保証するため,プログラム言語を用いてkg上のマルチホップ推論プロセスを定式化し,ベースllmを微調整するコードベースの命令データセットを合成する。
大規模な実験では、LLaMA-7Bのチューニングに10Kサンプルのみを使用することで、ドメイン内およびドメイン外の両方のデータセットにおいて、より大きなLLMまたはそれ以上のデータを使用して最先端のメソッドよりパフォーマンスがよいことが示されている。
私たちのコードとデータは公開される予定だ。
関連論文リスト
- Decoding on Graphs: Faithful and Sound Reasoning on Knowledge Graphs through Generation of Well-Formed Chains [66.55612528039894]
知識グラフ(KG)は質問応答(QA)のための信頼できる知識ソースとして機能する。
我々は、LLMとKGの深い相乗効果を促進する新しいフレームワークであるDoG(Decoding on Graphs)を提案する。
様々なKGQAタスクに対して異なるバックグラウンドKGを用いた実験により、DoGが優れた、堅牢なパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-10-24T04:01:40Z) - Tree-of-Traversals: A Zero-Shot Reasoning Algorithm for Augmenting Black-box Language Models with Knowledge Graphs [72.89652710634051]
知識グラフ(KG)は、信頼性があり、構造化され、ドメイン固有であり、最新の外部知識を提供することで、Large Language Models(LLM)を補完する。
そこで本研究では,ゼロショット推論アルゴリズムであるTree-of-Traversalsを導入する。
論文 参考訳(メタデータ) (2024-07-31T06:01:24Z) - EffiQA: Efficient Question-Answering with Strategic Multi-Model Collaboration on Knowledge Graphs [11.323661062578799]
EffiQAは、グローバルプランニング、効率的なKG探査、自己回帰という3つの段階で構成されている。
複数のKBQAベンチマークに関する実証的な証拠は、EffiQAの有効性を示している。
提案された新しいフレームワークが、効率的で知識集約的なクエリの道を開くことを期待しています。
論文 参考訳(メタデータ) (2024-06-03T11:56:07Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
コミットメッセージ生成(CMG)アプローチは、与えられたコード差分に基づいてコミットメッセージを自動的に生成することを目的としている。
本稿では,Large Language Models (LLMs) を用いて高品質なコミットメッセージの生成にどの程度の期間を費やしてきたかを調べるための,最初の包括的な実験を行う。
論文 参考訳(メタデータ) (2024-04-23T08:24:43Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
我々は、知識グラフ(KG)を探索しながら、新しい実写トリプルを生成する、Generate-on-Graph(GoG)と呼ばれる学習自由な手法を提案する。
GoGはIKGQAでLLMをエージェントとKGの両方として扱うThinking-Searching-Generatingフレームワークを通じて推論を行う。
論文 参考訳(メタデータ) (2024-04-23T04:47:22Z) - From human experts to machines: An LLM supported approach to ontology
and knowledge graph construction [0.0]
大規模言語モデル(LLM)は、人間のような自然言語を理解し、生成する能力で最近人気を集めている。
本研究は,オープンソースLLMによって促進されるKGの半自動構築について考察する。
論文 参考訳(メタデータ) (2024-03-13T08:50:15Z) - Large Language Models Can Better Understand Knowledge Graphs Than We Thought [13.336418752729987]
知識グラフ(KG) モデルパラメータの埋め込みはますますコストがかかる。
現在のプロンプト方式は、しばしばトライアル・アンド・エラー方式に依存している。
非順序線形化三重項は、流線型NLテキストと比較して、LLMのKG理解に有効であることを示す。
論文 参考訳(メタデータ) (2024-02-18T10:44:03Z) - ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained
Language Models for Question Answering over Knowledge Graph [142.42275983201978]
本稿では,構造化推論を行うためのGNNを模倣するサブグラフ認識型自己認識機構を提案する。
また、モデルパラメータを2万のサブグラフで合成した質問に適応するための適応チューニング戦略も採用する。
実験により、ReasoningLMは、更新されたパラメータが少なく、トレーニングデータが少ない場合でも、最先端のモデルを大きなマージンで上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-30T07:18:54Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。