論文の概要: KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning
over Knowledge Graph
- arxiv url: http://arxiv.org/abs/2402.11163v1
- Date: Sat, 17 Feb 2024 02:07:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-20 23:01:23.150366
- Title: KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning
over Knowledge Graph
- Title(参考訳): KG-Agent:知識グラフ上の複雑な推論のための効率的な自律エージェントフレームワーク
- Authors: Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, Yang Song, Chen Zhu, Hengshu
Zhu, Ji-Rong Wen
- Abstract要約: 我々は、KG-Agentと呼ばれる自律LLMベースのエージェントフレームワークを提案する。
KG-Agentでは、LLM、多機能ツールボックス、KGベースのエグゼキュータ、知識メモリを統合する。
有効性を保証するため、プログラム言語を利用してKG上のマルチホップ推論プロセスを定式化する。
- 参考スコア(独自算出の注目度): 134.8631016845467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we aim to improve the reasoning ability of large language
models (LLMs) over knowledge graphs (KGs) to answer complex questions. Inspired
by existing methods that design the interaction strategy between LLMs and KG,
we propose an autonomous LLM-based agent framework, called KG-Agent, which
enables a small LLM to actively make decisions until finishing the reasoning
process over KGs. In KG-Agent, we integrate the LLM, multifunctional toolbox,
KG-based executor, and knowledge memory, and develop an iteration mechanism
that autonomously selects the tool then updates the memory for reasoning over
KG. To guarantee the effectiveness, we leverage program language to formulate
the multi-hop reasoning process over the KG, and synthesize a code-based
instruction dataset to fine-tune the base LLM. Extensive experiments
demonstrate that only using 10K samples for tuning LLaMA-7B can outperform
state-of-the-art methods using larger LLMs or more data, on both in-domain and
out-domain datasets. Our code and data will be publicly released.
- Abstract(参考訳): 本稿では,知識グラフ(kgs)よりも大規模言語モデル(llm)の推論能力を向上し,複雑な質問に答えることを目的とする。
そこで我々は,LLMとKGのインタラクション戦略を設計する既存の手法に着想を得て,KG-Agentと呼ばれる自律型LLMベースのエージェントフレームワークを提案する。
KG-Agentでは、LLM、多機能ツールボックス、KGベースのエグゼキュータ、知識メモリを統合し、ツールを自律的に選択し、KG上の推論のためにメモリを更新するイテレーションメカニズムを開発する。
有効性を保証するため,プログラム言語を用いてkg上のマルチホップ推論プロセスを定式化し,ベースllmを微調整するコードベースの命令データセットを合成する。
大規模な実験では、LLaMA-7Bのチューニングに10Kサンプルのみを使用することで、ドメイン内およびドメイン外の両方のデータセットにおいて、より大きなLLMまたはそれ以上のデータを使用して最先端のメソッドよりパフォーマンスがよいことが示されている。
私たちのコードとデータは公開される予定だ。
関連論文リスト
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
LLM-Lassoは大規模言語モデル(LLM)を利用してラッソ回帰における特徴選択を導くフレームワークである。
LLMは各特徴に対してペナルティ因子を生成し、単純でチューニング可能なモデルを用いてラスソペナルティの重みに変換される。
LLMによりより関連づけられた特徴は、より低い罰を受け、最終モデルに保持される可能性を高める。
論文 参考訳(メタデータ) (2025-02-15T02:55:22Z) - Boosting Knowledge Graph-based Recommendations through Confidence-Aware Augmentation with Large Language Models [19.28217321004791]
大きな言語モデル(LLM)は、レコメンデーションタスクのための知識グラフの品質と関連性を改善するための有望な方法を提供する。
本稿では,KG と LLM を組み合わせた新しいフレームワークである LLM Augmentation (CKG-LLMA) を用いた Confidence-aware KG-based Recommendation Framework を提案する。
本フレームワークは,(1)高品質な情報でKGをリッチ化するためのLLMベースのサブグラフ拡張器,(2)ノイズの多い三重項をフィルタリングする信頼性に配慮したメッセージ伝搬機構,(3)ユーザ-テムインタラクションとKGデータを統合するための2視点コントラスト学習手法を含む。
論文 参考訳(メタデータ) (2025-02-06T02:06:48Z) - SymAgent: A Neural-Symbolic Self-Learning Agent Framework for Complex Reasoning over Knowledge Graphs [38.517345561999115]
SymAgentは、知識グラフと大規模言語モデルとの協調的な拡張を実現する革新的なニューラルシンボリックエージェントフレームワークである。
我々はKGを動的環境として概念化し、複雑な推論タスクを多段階の対話プロセスに変換することにより、KGが推論プロセスに深く参加できるようにする。
論文 参考訳(メタデータ) (2025-02-05T15:37:05Z) - Thinking with Knowledge Graphs: Enhancing LLM Reasoning Through Structured Data [0.9284740716447338]
大規模言語モデル(LLM)は、自然言語の理解と生成において顕著な能力を示した。
近年の研究では、知識グラフ(KG)を活用してLLM性能を向上させるという有望な成果が示されている。
我々は、KG構造と意味論をLLM表現に密に統合する様々な手法を開発した。
論文 参考訳(メタデータ) (2024-12-14T02:51:47Z) - Decoding on Graphs: Faithful and Sound Reasoning on Knowledge Graphs through Generation of Well-Formed Chains [66.55612528039894]
知識グラフ(KG)は質問応答(QA)のための信頼できる知識ソースとして機能する。
我々は、LLMとKGの深い相乗効果を促進する新しいフレームワークであるDoG(Decoding on Graphs)を提案する。
様々なKGQAタスクに対して異なるバックグラウンドKGを用いた実験により、DoGが優れた、堅牢なパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-10-24T04:01:40Z) - Tree-of-Traversals: A Zero-Shot Reasoning Algorithm for Augmenting Black-box Language Models with Knowledge Graphs [72.89652710634051]
知識グラフ(KG)は、信頼性があり、構造化され、ドメイン固有であり、最新の外部知識を提供することで、Large Language Models(LLM)を補完する。
そこで本研究では,ゼロショット推論アルゴリズムであるTree-of-Traversalsを導入する。
論文 参考訳(メタデータ) (2024-07-31T06:01:24Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
コミットメッセージ生成(CMG)アプローチは、与えられたコード差分に基づいてコミットメッセージを自動的に生成することを目的としている。
本稿では,Large Language Models (LLMs) を用いて高品質なコミットメッセージの生成にどの程度の期間を費やしてきたかを調べるための,最初の包括的な実験を行う。
論文 参考訳(メタデータ) (2024-04-23T08:24:43Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
我々は、知識グラフ(KG)を探索しながら、新しい実写トリプルを生成する、Generate-on-Graph(GoG)と呼ばれる学習自由な手法を提案する。
GoGはIKGQAでLLMをエージェントとKGの両方として扱うThinking-Searching-Generatingフレームワークを通じて推論を行う。
論文 参考訳(メタデータ) (2024-04-23T04:47:22Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。