LLM can Achieve Self-Regulation via Hyperparameter Aware Generation
- URL: http://arxiv.org/abs/2402.11251v1
- Date: Sat, 17 Feb 2024 11:18:22 GMT
- Title: LLM can Achieve Self-Regulation via Hyperparameter Aware Generation
- Authors: Siyin Wang, Shimin Li, Tianxiang Sun, Jinlan Fu, Qinyuan Cheng,
Jiasheng Ye, Junjie Ye, Xipeng Qiu, Xuanjing Huang
- Abstract summary: Large Language Models (LLMs) employ diverse decoding strategies to control the generated text.
Are LLMs conscious of the existence of these decoding strategies and capable of regulating themselves?
We propose a novel text generation paradigm termed Hyperparameter Aware Generation (HAG)
- Score: 88.69052513433603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of Large Language Models (LLMs), users commonly employ diverse
decoding strategies and adjust hyperparameters to control the generated text.
However, a critical question emerges: Are LLMs conscious of the existence of
these decoding strategies and capable of regulating themselves? The current
decoding generation process often relies on empirical and heuristic manual
adjustments to hyperparameters based on types of tasks and demands. However,
this process is typically cumbersome, and the decoding hyperparameters may not
always be optimal for each sample. To address the aforementioned challenges, we
propose a novel text generation paradigm termed Hyperparameter Aware Generation
(HAG). By leveraging hyperparameter-aware instruction tuning, the LLM
autonomously determines the optimal decoding strategy and configs based on the
input samples, enabling self-regulation. Our approach eliminates the need for
extensive manual tuning, offering a more autonomous, self-regulate model
behavior. Experimental results spanning six datasets across reasoning,
creativity, translation, and mathematics tasks demonstrate that
hyperparameter-aware instruction tuning empowers the LLMs to self-regulate the
decoding strategy and hyperparameter. HAG extends the current paradigm in the
text generation process, highlighting the feasibility of endowing the LLMs with
self-regulate decoding strategies.
Related papers
- Decoding Decoded: Understanding Hyperparameter Effects in Open-Ended Text Generation [0.22499166814992438]
Decoding strategies for generative large language models (LLMs) are a critical but often underexplored aspect of text generation tasks.
In this study, we undertake a large-scale empirical assessment of a range of decoding methods, open-source LLMs, textual domains, and evaluation protocols.
Our experiments include both factual (e.g., news) and creative (e.g., fiction) domains, and incorporate a broad suite of automatic evaluation metrics alongside human judgments.
arXiv Detail & Related papers (2024-10-08T14:51:03Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Adaptive Draft-Verification for Efficient Large Language Model Decoding [24.347886232342862]
Large language model (LLM) decoding involves generating a sequence of tokens based on a given context.
The typical autoregressive decoding method requires a separate forward pass through the model for each token generated.
We introduce ADED, which accelerates LLM decoding without requiring fine-tuning.
arXiv Detail & Related papers (2024-06-27T22:20:39Z) - Adaptable Logical Control for Large Language Models [68.27725600175013]
Ctrl-G is an adaptable framework that facilitates tractable and flexible control of model generation at inference time.
We show that Ctrl-G, when applied to a TULU2-7B model, outperforms GPT3.5 and GPT4 on the task of interactive text editing.
arXiv Detail & Related papers (2024-06-19T23:47:59Z) - Verbalized Machine Learning: Revisiting Machine Learning with Language Models [63.10391314749408]
We introduce the framework of verbalized machine learning (VML)
VML constrains the parameter space to be human-interpretable natural language.
We empirically verify the effectiveness of VML, and hope that VML can serve as a stepping stone to stronger interpretability.
arXiv Detail & Related papers (2024-06-06T17:59:56Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs)
We propose a novel method that involves learning scalable and pluggable virtual tokens for RAG.
arXiv Detail & Related papers (2024-05-30T03:44:54Z) - Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation with Large Language Models [11.845239346943067]
parameter-efficient fine-tuning (PEFT) is a promising approach to efficiently specialize large language models (LLMs) to task-specific data.
Our study highlights the potential for tuning larger LLMs and significant reductions in memory usage by combining PEFT with quantization.
arXiv Detail & Related papers (2023-08-21T04:31:06Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
We introduce Directional Stimulus Prompting, a novel framework for guiding black-box large language models (LLMs) toward specific desired outputs.
Instead of directly adjusting LLMs, our method employs a small tunable policy model to generate an auxiliary directional stimulus prompt for each input instance.
arXiv Detail & Related papers (2023-02-22T17:44:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.