Language Models Don't Learn the Physical Manifestation of Language
- URL: http://arxiv.org/abs/2402.11349v2
- Date: Thu, 6 Jun 2024 17:20:21 GMT
- Title: Language Models Don't Learn the Physical Manifestation of Language
- Authors: Bruce W. Lee, JaeHyuk Lim,
- Abstract summary: We argue that language-only models don't learn the physical manifestation of language.
We present an empirical investigation of visual-auditory properties of language through a series of tasks, termed H-Test.
- Score: 0.3529736140137004
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We argue that language-only models don't learn the physical manifestation of language. We present an empirical investigation of visual-auditory properties of language through a series of tasks, termed H-Test. These tasks highlight a fundamental gap between human linguistic understanding and the sensory-deprived linguistic understanding of LLMs. In support of our hypothesis, 1. deliberate reasoning (Chain-of-Thought), 2. few-shot examples, or 3. stronger LLM from the same model family (LLaMA 2 13B -> LLaMA 2 70B) has no significant effect on H-Test performance. We bring in the philosophical case of Mary, who learns about the world in a sensory-deprived environment as a useful conceptual framework to understand how language-only models learn about the world (Jackson, 1986). Our experiments show that some of the strongest proprietary LLMs stay near random chance baseline accuracy of 50%, highlighting the limitations of linguistic knowledge acquired in the absence of sensory experience. Our code and data are available at <github.com/brucewlee/h-test>.
Related papers
- One Mind, Many Tongues: A Deep Dive into Language-Agnostic Knowledge Neurons in Large Language Models [19.58983929459173]
Large language models (LLMs) have learned vast amounts of factual knowledge through self-supervised pre-training on large-scale corpora.
LLMs have also demonstrated excellent multilingual capabilities, which can express the learned knowledge in multiple languages.
arXiv Detail & Related papers (2024-11-26T13:03:49Z) - Large Models of What? Mistaking Engineering Achievements for Human Linguistic Agency [0.11510009152620666]
We argue that claims regarding linguistic capabilities of Large Language Models (LLMs) are based on at least two unfounded assumptions.
Language completeness assumes that a distinct and complete thing such as a natural language' exists.
The assumption of data completeness relies on the belief that a language can be quantified and wholly captured by data.
arXiv Detail & Related papers (2024-07-11T18:06:01Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.
But can these models relate corresponding concepts across languages, effectively being crosslingual?
This study evaluates six state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - Can large language models understand uncommon meanings of common words? [30.527834781076546]
Large language models (LLMs) have shown significant advancements across diverse natural language understanding (NLU) tasks.
Yet, lacking widely acknowledged testing mechanisms, answering whether LLMs are parrots or genuinely comprehend the world' remains unclear.
This paper presents innovative construction of a Lexical Semantic dataset with novel evaluation metrics.
arXiv Detail & Related papers (2024-05-09T12:58:22Z) - Holmes: A Benchmark to Assess the Linguistic Competence of Language Models [59.627729608055006]
We introduce Holmes, a new benchmark designed to assess language models (LMs) linguistic competence.
We use computation-based probing to examine LMs' internal representations regarding distinct linguistic phenomena.
As a result, we meet recent calls to disentangle LMs' linguistic competence from other cognitive abilities.
arXiv Detail & Related papers (2024-04-29T17:58:36Z) - Mind's Eye of LLMs: Visualization-of-Thought Elicits Spatial Reasoning in Large Language Models [71.93366651585275]
Large language models (LLMs) have exhibited impressive performance in language comprehension and various reasoning tasks.
We propose Visualization-of-Thought (VoT) to elicit spatial reasoning of LLMs by visualizing their reasoning traces.
VoT significantly enhances the spatial reasoning abilities of LLMs.
arXiv Detail & Related papers (2024-04-04T17:45:08Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
Large language models (LLMs) demonstrate remarkable multilingual capabilities without being pre-trained on specially curated multilingual parallel corpora.
We propose a novel detection method, language activation probability entropy (LAPE), to identify language-specific neurons within LLMs.
Our findings indicate that LLMs' proficiency in processing a particular language is predominantly due to a small subset of neurons.
arXiv Detail & Related papers (2024-02-26T09:36:05Z) - When LLMs Meet Cunning Texts: A Fallacy Understanding Benchmark for Large Language Models [59.84769254832941]
We propose a FaLlacy Understanding Benchmark (FLUB) containing cunning texts that are easy for humans to understand but difficult for models to grasp.
Specifically, the cunning texts that FLUB focuses on mainly consist of the tricky, humorous, and misleading texts collected from the real internet environment.
Based on FLUB, we investigate the performance of multiple representative and advanced LLMs.
arXiv Detail & Related papers (2024-02-16T22:12:53Z) - POSQA: Probe the World Models of LLMs with Size Comparisons [38.30479784257936]
Embodied language comprehension emphasizes that language understanding is not solely a matter of mental processing in the brain.
With the explosive growth of Large Language Models (LLMs) and their already ubiquitous presence in our daily lives, it is becoming increasingly necessary to verify their real-world understanding.
arXiv Detail & Related papers (2023-10-20T10:05:01Z) - Spoken Language Intelligence of Large Language Models for Language
Learning [3.5924382852350902]
We focus on evaluating the efficacy of large language models (LLMs) in the realm of education.
We introduce a new multiple-choice question dataset to evaluate the effectiveness of LLMs in the aforementioned scenarios.
We also investigate the influence of various prompting techniques such as zero- and few-shot method.
We find that models of different sizes have good understanding of concepts in phonetics, phonology, and second language acquisition, but show limitations in reasoning for real-world problems.
arXiv Detail & Related papers (2023-08-28T12:47:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.