論文の概要: Reinforcement learning to maximise wind turbine energy generation
- arxiv url: http://arxiv.org/abs/2402.11384v1
- Date: Sat, 17 Feb 2024 21:35:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-20 21:33:38.212919
- Title: Reinforcement learning to maximise wind turbine energy generation
- Title(参考訳): 風力発電の最大化のための強化学習
- Authors: Daniel Soler, Oscar Mari\~no, David Huergo, Mart\'in de Frutos,
Esteban Ferrer
- Abstract要約: 本研究では,ロータ速度,ロータヨー角,ブレードピッチ角を積極的に変化させることで,風力タービンのエネルギー発生を制御するための強化学習戦略を提案する。
優先体験再生剤を用いた二重深度Q-ラーニングとブレード要素運動量モデルとを結合し、風の変化を制御できるように訓練する。
エージェントは、単純な定常風に対して最適な制御(速度、ヨー、ピッチ)を決定するように訓練され、その後、実際の動的乱流風に挑戦され、良好な性能を示す。
- 参考スコア(独自算出の注目度): 0.8437187555622164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a reinforcement learning strategy to control wind turbine energy
generation by actively changing the rotor speed, the rotor yaw angle and the
blade pitch angle. A double deep Q-learning with a prioritized experience
replay agent is coupled with a blade element momentum model and is trained to
allow control for changing winds. The agent is trained to decide the best
control (speed, yaw, pitch) for simple steady winds and is subsequently
challenged with real dynamic turbulent winds, showing good performance. The
double deep Q- learning is compared with a classic value iteration
reinforcement learning control and both strategies outperform a classic PID
control in all environments. Furthermore, the reinforcement learning approach
is well suited to changing environments including turbulent/gusty winds,
showing great adaptability. Finally, we compare all control strategies with
real winds and compute the annual energy production. In this case, the double
deep Q-learning algorithm also outperforms classic methodologies.
- Abstract(参考訳): 本研究では,ロータ速度,ロータヨー角,ブレードピッチ角を積極的に変化させることで,風力タービンのエネルギー発生を制御するための強化学習戦略を提案する。
優先体験再生剤を用いた二重深度Q学習をブレード要素運動量モデルに結合し、風の変化を制御できるように訓練する。
エージェントは、単純な定常風に対して最適な制御(速度、ヨー、ピッチ)を決定するように訓練され、その後、実際の動的乱流風に挑戦され、良好な性能を示す。
ダブルディープQ-ラーニングは、古典的なイテレーション強化学習制御と比較され、どちらの戦略も古典的なPID制御を全ての環境で上回る。
さらに, 補強学習手法は, 乱流風などの環境変化に適しており, 高い適応性を示す。
最後に,全制御戦略と実風を比較し,年間エネルギー生産量を計算する。
この場合、ダブルディープQ-ラーニングアルゴリズムは古典的手法よりも優れている。
関連論文リスト
- ControlNeXt: Powerful and Efficient Control for Image and Video Generation [59.62289489036722]
制御可能画像と映像生成のための強力かつ効率的な制御NeXtを提案する。
まず、より単純で効率的なアーキテクチャを設計し、より重いブランチを最小限のコストで置き換えます。
トレーニングでは,学習可能なパラメータの最大90%を,代替案と比較して削減する。
論文 参考訳(メタデータ) (2024-08-12T11:41:18Z) - Deep Reinforcement Learning for Multi-Objective Optimization: Enhancing Wind Turbine Energy Generation while Mitigating Noise Emissions [0.4218593777811082]
風力タービンの深部強化学習を用いたトルクピッチ制御フレームワークを開発した。
我々は、風力タービンパラメータの正確な制御を可能にするために、ブレード要素運動量解決器と組み合わされた二重深度Q-ラーニングを用いる。
論文 参考訳(メタデータ) (2024-07-18T09:21:51Z) - A Novel Correlation-optimized Deep Learning Method for Wind Speed
Forecast [12.61580086941575]
風力発電の設置率の増加は、世界的電力システムに大きな課題をもたらす。
深層学習は風速予測に徐々に応用される。
新しい認知と記憶ユニット(CMU)は、従来のディープラーニングフレームワークを強化するために設計されている。
論文 参考訳(メタデータ) (2023-06-03T02:47:46Z) - Skip Training for Multi-Agent Reinforcement Learning Controller for
Industrial Wave Energy Converters [94.84709449845352]
近年のウェーブ・エナジー・コンバータ(WEC)は、発電を最大化するために複数の脚と発電機を備えている。
従来のコントローラは複雑な波のパターンを捕捉する制限を示しており、コントローラはエネルギー捕獲を効率的に最大化する必要がある。
本稿では,従来のスプリングダンパよりも優れたマルチエージェント強化学習コントローラ(MARL)を提案する。
論文 参考訳(メタデータ) (2022-09-13T00:20:31Z) - Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds [96.74836678572582]
本稿では,ディープラーニングを通じて事前学習した表現を組み込むことで,オンラインでの迅速な適応を可能にする学習ベースのアプローチを提案する。
Neural-Flyは、最先端の非線形かつ適応的なコントローラよりもかなり少ないトラッキングエラーで正確な飛行制御を実現する。
論文 参考訳(メタデータ) (2022-05-13T21:55:28Z) - Optimizing Airborne Wind Energy with Reinforcement Learning [0.0]
強化学習(Reinforcement Learning)は、システムの事前の知識を必要とせずに、観察と利益ある行動とを関連付ける技術である。
シミュレーション環境において、強化学習は、遠距離で車両を牽引できるように、カイトを効率的に制御する方法を見出した。
論文 参考訳(メタデータ) (2022-03-27T10:28:16Z) - Measuring Wind Turbine Health Using Drifting Concepts [55.87342698167776]
風力タービンの健全性解析のための2つの新しい手法を提案する。
第1の方法は、比較的高低電力生産の減少または増加を評価することを目的とする。
第2の方法は抽出された概念の全体的ドリフトを評価する。
論文 参考訳(メタデータ) (2021-12-09T14:04:55Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
電力系統制御のために提案された最先端のRLエージェントが敵攻撃に対して脆弱であることを示す。
具体的には、敵のマルコフ決定プロセスを用いて攻撃方針を学習し、攻撃の有効性を実証する。
本稿では,RLエージェントの攻撃に対する堅牢性を高め,実行不可能な運用上の決定を回避するために,敵の訓練を利用することを提案する。
論文 参考訳(メタデータ) (2021-10-18T00:50:34Z) - Meta-Learning-Based Robust Adaptive Flight Control Under Uncertain Wind
Conditions [13.00214468719929]
リアルタイムモデル学習は、さまざまな風条件で飛行するドローンなどの複雑なダイナミクスシステムにとって困難です。
本稿では,ディープニューラルネットワークからの出力を基本関数の集合として扱うオンライン複合適応手法を提案する。
我々は,風条件の異なる空洞でドローンを飛ばし,挑戦的な軌道を飛行させることにより,我々のアプローチを検証する。
論文 参考訳(メタデータ) (2021-03-02T18:43:59Z) - Scalable Optimization for Wind Farm Control using Coordination Graphs [5.56699571220921]
風力発電の制御装置は、グリッドオペレータによって課される電力需要と農場の電力生産を一致させるために必要である。
風力タービン間の複雑な依存関係が存在するため、これは非自明な最適化問題である。
本研究では,スパースな風力場構造を利用して最適化問題を推定する風力場制御の新しい学習方法を提案する。
論文 参考訳(メタデータ) (2021-01-19T20:12:30Z) - Learning a Contact-Adaptive Controller for Robust, Efficient Legged
Locomotion [95.1825179206694]
四足歩行ロボットのためのロバストコントローラを合成するフレームワークを提案する。
高レベルコントローラは、環境の変化に応じてプリミティブのセットを選択することを学習する。
確立された制御方法を使用してプリミティブを堅牢に実行する低レベルコントローラ。
論文 参考訳(メタデータ) (2020-09-21T16:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。