Gauging Public Acceptance of Conditionally Automated Vehicles in the United States
- URL: http://arxiv.org/abs/2402.11444v3
- Date: Wed, 17 Apr 2024 00:43:52 GMT
- Title: Gauging Public Acceptance of Conditionally Automated Vehicles in the United States
- Authors: Antonios Saravanos, Eleftheria K. Pissadaki, Wayne S. Singh, Donatella Delfino,
- Abstract summary: Social influence, performance expectancy, effort expectancy, hedonic motivation, and facilitating conditions determine conditionally automated vehicle acceptance.
By integrating the insights gained from this study, stakeholders can better facilitate the adoption of autonomous vehicle technology.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Public acceptance of conditionally automated vehicles is a crucial step in the realization of smart cities. Prior research in Europe has shown that the factors of hedonic motivation, social influence, and performance expectancy, in decreasing order of importance, influence acceptance. Moreover, a generally positive acceptance of the technology was reported. However, there is a lack of information regarding the public acceptance of conditionally automated vehicles in the United States. In this study, we carried out a web-based experiment where participants were provided information regarding the technology and then completed a questionnaire on their perceptions. The collected data was analyzed using PLS-SEM to examine the factors that may lead to public acceptance of the technology in the United States. Our findings showed that social influence, performance expectancy, effort expectancy, hedonic motivation, and facilitating conditions determine conditionally automated vehicle acceptance. Additionally, certain factors were found to influence the perception of how useful the technology is, the effort required to use it, and the facilitating conditions for its use. By integrating the insights gained from this study, stakeholders can better facilitate the adoption of autonomous vehicle technology, contributing to safer, more efficient, and user-friendly transportation systems in the future that help realize the vision of the smart city.
Related papers
- The impact of labeling automotive AI as "trustworthy" or "reliable" on user evaluation and technology acceptance [0.0]
This study explores whether labeling AI as "trustworthy" or "reliable" influences user perceptions and acceptance of automotive AI technologies.
Using a one-way between-subjects design, the research involved 478 online participants who were presented with guidelines for either trustworthy or reliable AI.
Although labeling AI as "trustworthy" did not significantly influence judgments on specific scenarios, it increased perceived ease of use and human-like trust, particularly benevolence.
arXiv Detail & Related papers (2024-08-20T14:48:24Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Investigating End-user Acceptance of Last-mile Delivery by Autonomous
Vehicles in the United States [0.0]
This paper investigates the end-user acceptance of last-mile delivery carried out by autonomous vehicles within the United States.
The perceived usefulness of the technology played the greatest role in end-user acceptance decisions.
The perception of risk associated with using autonomous delivery vehicles for last-mile delivery led to a decrease in acceptance.
arXiv Detail & Related papers (2022-05-28T00:36:27Z) - Improving Urban Mobility: using artificial intelligence and new
technologies to connect supply and demand [7.347028791196305]
The are of intelligent transportation systems (ITS) aims at investigating how to employ information and communication technologies to problems related to transportation.
In this panorama, artificial intelligence plays an important role, especially with the advances in machine learning.
arXiv Detail & Related papers (2022-03-18T14:37:33Z) - Empowering Local Communities Using Artificial Intelligence [70.17085406202368]
It has become an important topic to explore the impact of AI on society from a people-centered perspective.
Previous works in citizen science have identified methods of using AI to engage the public in research.
This article discusses the challenges of applying AI in Community Citizen Science.
arXiv Detail & Related papers (2021-10-05T12:51:11Z) - Accelerating the Adoption of Disruptive Technologies: The Impact of
COVID-19 on Intentions to Use Autonomous Vehicles [0.0]
This study examines the impact of the COVID-19 pandemic on willingness to adopt the emerging technology of autonomous vehicles.
Results reveal that the COVID-19 pandemic has a positive and highly significant impact on the consideration of using autonomous vehicles.
arXiv Detail & Related papers (2021-08-03T16:35:38Z) - The 5th AI City Challenge [51.83023045451549]
The fifth AI City Challenge attracted 305 participating teams across 38 countries.
The evaluation was conducted on both algorithmic effectiveness and computational efficiency.
Results show the promise of AI in Smarter Transportation.
arXiv Detail & Related papers (2021-04-25T19:15:27Z) - AI in Smart Cities: Challenges and approaches to enable road vehicle
automation and smart traffic control [56.73750387509709]
SCC ideates on a data-centered society aiming at improving efficiency by automating and optimizing activities and utilities.
This paper describes AI perspectives in SCC and gives an overview of AI-based technologies used in traffic to enable road vehicle automation and smart traffic control.
arXiv Detail & Related papers (2021-04-07T14:31:08Z) - Toward a Rational and Ethical Sociotechnical System of Autonomous
Vehicles: A Novel Application of Multi-Criteria Decision Analysis [0.0]
The expansion of artificial intelligence (AI) and autonomous systems has shown the potential to generate enormous social good.
There is a pressing need to address relevant social concerns to allow for the development of systems of intelligent agents.
arXiv Detail & Related papers (2021-02-04T23:52:31Z) - Urban Sensing based on Mobile Phone Data: Approaches, Applications and
Challenges [67.71975391801257]
Much concern in mobile data analysis is related to human beings and their behaviours.
This work aims to review the methods and techniques that have been implemented to discover knowledge from mobile phone data.
arXiv Detail & Related papers (2020-08-29T15:14:03Z) - Smart Urban Mobility: When Mobility Systems Meet Smart Data [55.456196356335745]
Cities around the world are expanding dramatically, with urban population growth reaching nearly 2.5 billion people in urban areas and road traffic growth exceeding 1.2 billion cars by 2050.
The economic contribution of the transport sector represents 5% of the GDP in Europe and costs an average of US $482.05 billion in the U.S.
arXiv Detail & Related papers (2020-05-09T13:53:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.