論文の概要: To use or not to use proprietary street view images in (health and place) research? That is the question
- arxiv url: http://arxiv.org/abs/2402.11504v2
- Date: Thu, 21 Mar 2024 14:02:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 19:07:50.739636
- Title: To use or not to use proprietary street view images in (health and place) research? That is the question
- Title(参考訳): 健康と場所)研究における独自のストリートビュー画像の使用の有無 : それが問題である
- Authors: Marco Helbich, Matthew Danish, SM Labib, Britta Ricker,
- Abstract要約: この記事では、ヨーロッパの観点からGoogleストリートビュー画像を使用する際の現在の実践について疑問を呈する。
画像の大量ダウンロードやストリートビュー画像ベースのインデックスの生成を制限するGoogleのサービス規約に懸念があります。
- 参考スコア(独自算出の注目度): 0.20999222360659603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer vision-based analysis of street view imagery has transformative impacts on environmental assessments. Interactive web services, particularly Google Street View, play an ever-important role in making imagery data ubiquitous. Despite the technical ease of harnessing millions of Google Street View images, this article questions the current practices in using this proprietary data source from a European viewpoint. Our concern lies with Google's terms of service, which restrict bulk image downloads and the generation of street view image-based indices. To reconcile the challenge of advancing society through groundbreaking research while maintaining data license agreements and legal integrity, we believe it is crucial to 1) include an author's statement on using proprietary street view data and the directives it entails, 2) negotiate academic-specific license to democratize Google Street View data access, and 3) adhere to open data principles and utilize open image sources for future research.
- Abstract(参考訳): コンピュータビジョンによるストリートビュー画像の分析は環境評価に変革をもたらす。
インタラクティブなWebサービス、特にGoogleストリートビューは、画像データをユビキタスにするための重要な役割を担っている。
何百万ものGoogleストリートビュー画像を利用する技術的容易さにもかかわらず、この記事ではヨーロッパの観点から、このプロプライエタリなデータソースを使用する際の現在のプラクティスに疑問を投げかけます。
画像の大量ダウンロードやストリートビュー画像ベースのインデックスの生成を制限するGoogleのサービス規約に懸念があります。
データライセンス契約と法的整合性を維持しつつ、基礎研究を通じて社会を前進させることの課題を和解させるためには、それが不可欠であると信じている。
1) プロプライエタリなストリートビューデータとそれに関連するディレクティブの使用に関する著者の声明を含む。
2) Googleストリートビューのデータアクセスを民主化するために学術固有のライセンスを交渉し、
3)オープンデータ原則に固執し、将来の研究にオープンイメージソースを活用する。
関連論文リスト
- Ethical Challenges in Computer Vision: Ensuring Privacy and Mitigating Bias in Publicly Available Datasets [0.0]
本稿では,コンピュータビジョン技術の創造と展開に関する倫理的問題に光を当てることを目的とする。
コンピュータビジョンは医療、セキュリティシステム、貿易など多くの産業において重要なツールとなっている。
論文 参考訳(メタデータ) (2024-08-31T00:59:29Z) - Bird's-Eye View to Street-View: A Survey [16.90516098120805]
衛星画像からストリートビュー画像がどのように合成されるのかを概観するため、20の最近の研究論文をレビューした。
主な発見は, (i) より現実的で正確なストリートビュー画像の合成に新しいディープラーニング技術が必要であること, (ii) 公共利用のためにより多くのデータセットを収集する必要があること, (iii) 生成された画像を適切に評価するためには,より具体的な評価指標を検討する必要があること,である。
論文 参考訳(メタデータ) (2024-05-14T21:01:12Z) - A citizen science toolkit to collect human perceptions of urban environments using open street view images [0.20999222360659603]
ストリートビュー画像(SVI)は、研究(環境評価、緑地識別、土地被覆分類など)に有用なデータソースである。
オープンなSVIデータセットは、Mapillaryのような制限の少ないソースから容易に利用できる。
オープンなSVIを自動ダウンロード、処理、収穫、フィルタリングする効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-02-29T22:58:13Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
著作権法は、クリエイティブ作品を再生、配布、収益化する排他的権利をクリエイターに与えている。
テキスト・ツー・イメージ・ジェネレーションの最近の進歩は、著作権の執行に重大な課題をもたらしている。
CLIP、ChatGPT、拡散モデルを調和させてデータセットをキュレートする新しいパイプラインを導入する。
論文 参考訳(メタデータ) (2024-01-04T11:14:01Z) - ConfounderGAN: Protecting Image Data Privacy with Causal Confounder [85.6757153033139]
本稿では,GAN(Generative Adversarial Network)のConfounderGANを提案する。
実験は、3つの自然なオブジェクトデータセットと3つの医療データセットからなる6つの画像分類データセットで実施される。
論文 参考訳(メタデータ) (2022-12-04T08:49:14Z) - Open-Domain, Content-based, Multi-modal Fact-checking of Out-of-Context
Images via Online Resources [70.68526820807402]
実際のイメージは、コンテキストや要素を誤って表現することによって、他の物語をサポートするために再目的化される。
私たちのゴールは、画像とコンテキストのペアリングを事実チェックすることで、この時間を要する、推論集約的なプロセスを自動化する検査可能な方法です。
私たちの研究は、オープンドメイン、コンテンツベース、マルチモーダルなファクトチェックのための最初のステップとベンチマークを提供します。
論文 参考訳(メタデータ) (2021-11-30T19:36:20Z) - Lighting the Darkness in the Deep Learning Era [118.35081853500411]
低照度画像強調(LLIE)は、照明の弱い環境で撮影された画像の知覚や解釈性を改善することを目的としている。
この分野における最近の進歩は、ディープラーニングベースのソリューションが支配的です。
アルゴリズム分類から未解決の未解決問題まで,さまざまな側面をカバーする包括的な調査を行う。
論文 参考訳(メタデータ) (2021-04-21T19:12:19Z) - Repopulating Street Scenes [59.2621467759251]
そこで本稿では,歩行者や車両などの物体を配置・非人口化・再人口化することにより,街頭シーンの画像を自動的に再構成する枠組みを提案する。
この手法の応用例としては、画像の匿名化によるプライバシー向上、自律運転のような知覚タスクのためのデータ強化などがある。
論文 参考訳(メタデータ) (2021-03-30T09:04:46Z) - A Review on Near Duplicate Detection of Images using Computer Vision
Techniques [0.0]
ほぼ重複する物質の存在は、検索エンジンの性能に重大な影響を及ぼす。
コンピュータビジョンの主な応用は画像理解である。
画像のほぼ重複検出に関する文献の適切な調査は行われていない。
論文 参考訳(メタデータ) (2020-09-07T16:41:46Z) - A vision for global privacy bridges: Technical and legal measures for
international data markets [77.34726150561087]
データ保護法とプライバシーの権利が認められているにもかかわらず、個人情報の取引は「トレーディング・オイル」と同等のビジネスになっている。
オープンな対立は、データに対するビジネスの要求とプライバシーへの欲求の間に生じている。
プライバシを備えたパーソナル情報市場のビジョンを提案し,テストする。
論文 参考訳(メタデータ) (2020-05-13T13:55:50Z) - Privacy-Preserving Image Classification in the Local Setting [17.375582978294105]
ローカル微分プライバシ(LDP)は、データ所有者がランダムにインプットを摂動させ、リリース前にデータの妥当な削除を可能にする、有望なソリューションを提供する。
本稿では、データ所有者が画像を保持し、不信なデータ利用者が機械学習モデルにこれらの画像を入力として適合させたいという、双方向のイメージ分類問題について考察する。
本稿では,拡張性のある領域サイズで画像表現を生成する,教師付き画像特徴抽出器 DCAConv を提案する。
論文 参考訳(メタデータ) (2020-02-09T01:25:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。