Federated Fine-tuning of Large Language Models under Heterogeneous Tasks and Client Resources
- URL: http://arxiv.org/abs/2402.11505v2
- Date: Thu, 30 May 2024 15:46:10 GMT
- Title: Federated Fine-tuning of Large Language Models under Heterogeneous Tasks and Client Resources
- Authors: Jiamu Bai, Daoyuan Chen, Bingchen Qian, Liuyi Yao, Yaliang Li,
- Abstract summary: Federated Learning (FL) has recently been applied to the parameter-efficient fine-tuning of Large Language Models (LLMs)
This study introduces FlexLoRA, a simple yet effective aggregation scheme for LLM fine-tuning.
- Score: 31.041608465716575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) has recently been applied to the parameter-efficient fine-tuning of Large Language Models (LLMs). While promising, it raises significant challenges due to the heterogeneous resources and data distributions of clients. This study introduces FlexLoRA, a simple yet effective aggregation scheme for LLM fine-tuning, which mitigates the ``bucket effect'' in traditional FL that restricts the potential of clients with ample resources by tying them to the capabilities of the least-resourced participants. FlexLoRA allows for dynamic adjustment of local LoRA ranks, fostering the development of a global model imbued with broader, less task-specific knowledge. By synthesizing a full-size LoRA weight from individual client contributions and employing Singular Value Decomposition (SVD) for weight redistribution, FlexLoRA fully leverages heterogeneous client resources. Involving thousands of clients performing heterogeneous NLP tasks and client resources, our experiments validate the efficacy of FlexLoRA, with the federated global model achieving consistently better improvement over SOTA FL methods in downstream NLP task performance across various heterogeneous distributions. FlexLoRA's practicality is further underscored by our theoretical analysis and its seamless integration with existing LoRA-based FL methods, offering a path toward cross-device, privacy-preserving federated tuning for LLMs.
Related papers
- Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.
We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
We propose an over-the-air fair federated learning algorithm (OTA-FFL) to train fair FL models.
Experiments demonstrate the superiority of OTA-FFL in achieving fairness and robust performance.
arXiv Detail & Related papers (2025-01-06T21:16:51Z) - Exploring Gradient Subspaces: Addressing and Overcoming LoRA's Limitations in Federated Fine-Tuning of Large Language Models [19.533062623518674]
This paper critically analyzes the convergence and performance guarantees of popular FL frameworks utilizing Low-Rank Adaptation (LoRA)
We demonstrate that direct weight averaging outperforms LoRA-based strategies, leading to superior performance for fine-tuned models.
Our findings show that GaLore along with direct-weight aggregation is a more effective approach, outperforming federated LoRA methods like FlexLoRA and FFA-LoRA across both text and image modalities.
arXiv Detail & Related papers (2024-10-30T15:23:44Z) - Fed-piLot: Optimizing LoRA Assignment for Efficient Federated Foundation Model Fine-Tuning [11.10244162253018]
We introduce Fed-piLot, an efficient FedFM fine-tuning framework with optimized local LoRA assignments for heterogeneous clients.
We design a Local-Global Information Gain Score (IG-Score) based value function to optimize LoRA assignment under clients' memory constraints.
Experimental results on three datasets under both IID and non-IID conditions demonstrate the effectiveness and efficiency of Fed-piLot.
arXiv Detail & Related papers (2024-10-14T06:36:41Z) - pFedLoRA: Model-Heterogeneous Personalized Federated Learning with LoRA
Tuning [35.59830784463706]
Federated learning (FL) is an emerging machine learning paradigm in which a central server coordinates multiple participants (clients) collaboratively to train on decentralized data.
We propose a novel and efficient model-heterogeneous personalized Federated learning framework based on LoRA tuning (pFedLoRA)
Experiments on two benchmark datasets demonstrate that pFedLoRA outperforms six state-of-the-art baselines.
arXiv Detail & Related papers (2023-10-20T05:24:28Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - Federated Learning for Semantic Parsing: Task Formulation, Evaluation
Setup, New Algorithms [29.636944156801327]
Multiple clients collaboratively train one global model without sharing their semantic parsing data.
Lorar adjusts each client's contribution to the global model update based on its training loss reduction during each round.
Clients with smaller datasets enjoy larger performance gains.
arXiv Detail & Related papers (2023-05-26T19:25:49Z) - Efficient Personalized Federated Learning via Sparse Model-Adaptation [47.088124462925684]
Federated Learning (FL) aims to train machine learning models for multiple clients without sharing their own private data.
We propose pFedGate for efficient personalized FL by adaptively and efficiently learning sparse local models.
We show that pFedGate achieves superior global accuracy, individual accuracy and efficiency simultaneously over state-of-the-art methods.
arXiv Detail & Related papers (2023-05-04T12:21:34Z) - Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated
Learning Framework [82.36466358313025]
We propose a primal-dual FL algorithm, termed FedVRA, that allows one to adaptively control the variance-reduction level and biasness of the global model.
Experiments based on (semi-supervised) image classification tasks demonstrate superiority of FedVRA over the existing schemes.
arXiv Detail & Related papers (2022-12-03T03:27:51Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.