LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement
- URL: http://arxiv.org/abs/2411.14961v1
- Date: Fri, 22 Nov 2024 14:19:01 GMT
- Title: LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement
- Authors: Jieming Bian, Lei Wang, Letian Zhang, Jie Xu,
- Abstract summary: Foundation models (FMs) achieve strong performance across diverse tasks with task-specific fine-tuning.
Low-Rank Adaptation (LoRA) methods like Low-Rank Adaptation (LoRA) reduce this cost by introducing low-rank matrices for tuning fewer parameters.
LoRA-FAIR maintains computational and communication efficiency, yielding superior performance over state-of-the-art methods.
- Score: 5.162783756846019
- License:
- Abstract: Foundation models (FMs) achieve strong performance across diverse tasks with task-specific fine-tuning, yet full parameter fine-tuning is often computationally prohibitive for large models. Parameter-efficient fine-tuning (PEFT) methods like Low-Rank Adaptation (LoRA) reduce this cost by introducing low-rank matrices for tuning fewer parameters. While LoRA allows for efficient fine-tuning, it requires significant data for adaptation, making Federated Learning (FL) an appealing solution due to its privacy-preserving collaborative framework. However, combining LoRA with FL introduces two key challenges: the \textbf{Server-Side LoRA Aggregation Bias}, where server-side averaging of LoRA matrices diverges from the ideal global update, and the \textbf{Client-Side LoRA Initialization Drift}, emphasizing the need for consistent initialization across rounds. Existing approaches address these challenges individually, limiting their effectiveness. We propose LoRA-FAIR, a novel method that tackles both issues by introducing a correction term on the server while keeping the original LoRA modules, enhancing aggregation efficiency and accuracy. LoRA-FAIR maintains computational and communication efficiency, yielding superior performance over state-of-the-art methods. Experimental results on ViT and MLP-Mixer models across large-scale datasets demonstrate that LoRA-FAIR consistently achieves performance improvements in FL settings.
Related papers
- Federated LLMs Fine-tuned with Adaptive Importance-Aware LoRA [24.871424801066006]
Federated fine-tuning of Large Language Models (LLMs) enables task-specific adaptation across diverse datasets while preserving data privacy.
We propose a novel Heterogeneous Adaptive Federated Low-Rank Adaptation (LoRA) fine-tuned LLM framework (HAFL)
Our method converges quickly with low communication size, and avoids performance degradation when distributing models to clients.
arXiv Detail & Related papers (2024-11-10T19:59:54Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - Fed-piLot: Optimizing LoRA Assignment for Efficient Federated Foundation Model Fine-Tuning [11.10244162253018]
We introduce Fed-piLot, an efficient FedFM fine-tuning framework with optimized local LoRA assignments for heterogeneous clients.
We design a Local-Global Information Gain Score (IG-Score) based value function to optimize LoRA assignment under clients' memory constraints.
Experimental results on three datasets under both IID and non-IID conditions demonstrate the effectiveness and efficiency of Fed-piLot.
arXiv Detail & Related papers (2024-10-14T06:36:41Z) - Exact Aggregation for Federated and Efficient Fine-Tuning of Foundation Models [5.1613368481802455]
Low-Rank Adaptation (LoRA) is a popular technique for efficient fine-tuning of foundation models.
We propose Federated Exact LoRA, or FedEx-LoRA, which adds a residual error term to the pretrained frozen weight matrix.
Our approach achieves exact updates with minimal computational and communication overhead, preserving LoRA's efficiency.
arXiv Detail & Related papers (2024-10-12T08:22:44Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) is an efficient way to fine-tune models by optimizing only a low-rank matrix.
A solution that appears flat in the LoRA space may exist sharp directions in the full parameter space, potentially harming generalization performance.
We propose Flat-LoRA, an efficient approach that seeks a low-rank adaptation located in a flat region of the full parameter space.
arXiv Detail & Related papers (2024-09-22T11:24:10Z) - FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low-Rank Adaptations [39.88985198467528]
We introduce a new approach called FLORA that enables federated fine-tuning on heterogeneous LoRA adapters.
Our approach is noise-free and seamlessly supports heterogeneous LoRA adapters.
arXiv Detail & Related papers (2024-09-09T18:21:23Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
Low-rank adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning of foundation models.
Despite its computational efficiency, LoRA still yields inferior performance compared to full fine-tuning.
We introduce LoRA-Pro, a method that enhances LoRA's performance by strategically adjusting the gradients of low-rank matrices.
arXiv Detail & Related papers (2024-07-25T17:57:12Z) - Mixture of LoRA Experts [87.50120181861362]
This paper introduces the Mixture of LoRA Experts (MoLE) approach, which harnesses hierarchical control and unfettered branch selection.
The MoLE approach achieves superior LoRA fusion performance in comparison to direct arithmetic merging.
arXiv Detail & Related papers (2024-04-21T11:59:53Z) - Improving LoRA in Privacy-preserving Federated Learning [44.47315926976059]
Low-rank adaptation (LoRA) is one of the most popular task-specific parameter-efficient fine-tuning (PEFT) methods on pre-trained language models.
This paper proposes an efficient and effective version of LoRA, Federated Freeze A LoRA (FFA-LoRA), to alleviate these challenges.
arXiv Detail & Related papers (2024-03-18T23:20:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.