Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark
- URL: http://arxiv.org/abs/2402.11592v3
- Date: Tue, 28 May 2024 03:27:06 GMT
- Title: Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark
- Authors: Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu Chen, Jason D. Lee, Wotao Yin, Mingyi Hong, Zhangyang Wang, Sijia Liu, Tianlong Chen,
- Abstract summary: This paper proposes a shift towards BP-free, zeroth-order (ZO) optimization as a solution for reducing memory costs during fine-tuning.
Unlike traditional ZO-SGD methods, our work expands the exploration to a wider array of ZO optimization techniques.
Our study unveils previously overlooked optimization principles, highlighting the importance of task alignment, the role of the forward gradient method, and the balance between algorithm complexity and fine-tuning performance.
- Score: 166.40879020706151
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the evolving landscape of natural language processing (NLP), fine-tuning pre-trained Large Language Models (LLMs) with first-order (FO) optimizers like SGD and Adam has become standard. Yet, as LLMs grow {in size}, the substantial memory overhead from back-propagation (BP) for FO gradient computation presents a significant challenge. Addressing this issue is crucial, especially for applications like on-device training where memory efficiency is paramount. This paper proposes a shift towards BP-free, zeroth-order (ZO) optimization as a solution for reducing memory costs during LLM fine-tuning, building on the initial concept introduced by MeZO. Unlike traditional ZO-SGD methods, our work expands the exploration to a wider array of ZO optimization techniques, through a comprehensive, first-of-its-kind benchmarking study across five LLM families (Roberta, OPT, LLaMA, Vicuna, Mistral), three task complexities, and five fine-tuning schemes. Our study unveils previously overlooked optimization principles, highlighting the importance of task alignment, the role of the forward gradient method, and the balance between algorithm complexity and fine-tuning performance. We further introduce novel enhancements to ZO optimization, including block-wise descent, hybrid training, and gradient sparsity. Our study offers a promising direction for achieving further memory-efficient LLM fine-tuning. Codes to reproduce all our experiments are at https://github.com/ZO-Bench/ZO-LLM .
Related papers
- SubZero: Random Subspace Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning [66.27334633749734]
As language models grow in size, memory demands for backpropagation increase.
Zeroth-order (ZOZO) optimization methods offer a memory-efficient alternative.
We show that SubZero enhances fine-tuning and achieves faster results compared to standard ZOZO approaches.
arXiv Detail & Related papers (2024-10-11T17:01:43Z) - Enhancing Zeroth-order Fine-tuning for Language Models with Low-rank Structures [21.18741772731095]
Zeroth-order (ZO) algorithms offer a promising alternative by approximating gradients using finite differences of function values.
Existing ZO methods struggle to capture the low-rank gradient structure common in LLM fine-tuning, leading to suboptimal performance.
This paper proposes a low-rank ZO algorithm (LOZO) that effectively captures this structure in LLMs.
arXiv Detail & Related papers (2024-10-10T08:10:53Z) - Search-Based LLMs for Code Optimization [16.843870288512363]
Code written by developers usually suffers from efficiency problems and contain various performance bugs.
Recent work regards the task as a sequence generation problem, and resorts to deep learning (DL) techniques such as large language models (LLMs)
We propose a search-based LLMs framework named SBLLM that enables iterative refinement and discovery of improved optimization methods.
arXiv Detail & Related papers (2024-08-22T06:59:46Z) - Towards Explainable Evolution Strategies with Large Language Models [0.0]
This paper introduces an approach that integrates self-adaptive Evolution Strategies (ES) with Large Language Models (LLMs)
By employing a self-adaptive ES equipped with a restart mechanism, we effectively navigate the challenging landscapes of benchmark functions.
An LLM is then utilized to process these logs, generating concise, user-friendly summaries.
arXiv Detail & Related papers (2024-07-11T09:28:27Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs)
We propose a novel method that involves learning scalable and pluggable virtual tokens for RAG.
arXiv Detail & Related papers (2024-05-30T03:44:54Z) - Large Language Models As Evolution Strategies [6.873777465945062]
In this work, we investigate whether large language models (LLMs) are in principle capable of implementing evolutionary optimization algorithms.
We introduce a novel prompting strategy, consisting of least-to-most sorting of discretized population members.
We find that our setup allows the user to obtain an LLM-based evolution strategy, which we call EvoLLM', that robustly outperforms baseline algorithms.
arXiv Detail & Related papers (2024-02-28T15:02:17Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - AdaLomo: Low-memory Optimization with Adaptive Learning Rate [59.64965955386855]
We introduce low-memory optimization with adaptive learning rate (AdaLomo) for large language models.
AdaLomo results on par with AdamW, while significantly reducing memory requirements, thereby lowering the hardware barrier to training large language models.
arXiv Detail & Related papers (2023-10-16T09:04:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.