Towards Explainable Evolution Strategies with Large Language Models
- URL: http://arxiv.org/abs/2407.08331v2
- Date: Mon, 5 Aug 2024 08:13:37 GMT
- Title: Towards Explainable Evolution Strategies with Large Language Models
- Authors: Jill Baumann, Oliver Kramer,
- Abstract summary: This paper introduces an approach that integrates self-adaptive Evolution Strategies (ES) with Large Language Models (LLMs)
By employing a self-adaptive ES equipped with a restart mechanism, we effectively navigate the challenging landscapes of benchmark functions.
An LLM is then utilized to process these logs, generating concise, user-friendly summaries.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces an approach that integrates self-adaptive Evolution Strategies (ES) with Large Language Models (LLMs) to enhance the explainability of complex optimization processes. By employing a self-adaptive ES equipped with a restart mechanism, we effectively navigate the challenging landscapes of benchmark functions, capturing detailed logs of the optimization journey. The logs include fitness evolution, step-size adjustments and restart events due to stagnation. An LLM is then utilized to process these logs, generating concise, user-friendly summaries that highlight key aspects such as convergence behavior, optimal fitness achievements, and encounters with local optima. Our case study on the Rastrigin function demonstrates how our approach makes the complexities of ES optimization transparent. Our findings highlight the potential of using LLMs to bridge the gap between advanced optimization algorithms and their interpretability.
Related papers
- Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
Large Language Models (LLMs) and Evolutionary Algorithms (EAs) offer promising new approach to overcome limitations and make optimization more automated.
LLMs act as dynamic agents that can generate, refine, and interpret optimization strategies.
EAs efficiently explore complex solution spaces through evolutionary operators.
arXiv Detail & Related papers (2024-10-28T09:04:49Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - Two Optimizers Are Better Than One: LLM Catalyst Empowers Gradient-Based Optimization for Prompt Tuning [69.95292905263393]
We show that gradient-based optimization and large language models (MsLL) are complementary to each other, suggesting a collaborative optimization approach.
Our code is released at https://www.guozix.com/guozix/LLM-catalyst.
arXiv Detail & Related papers (2024-05-30T06:24:14Z) - The Importance of Directional Feedback for LLM-based Optimizers [23.669705029245645]
We study the potential of using large language models (LLMs) as an interactive for solving problems in a text space using natural language and numerical feedback.
We design a new LLM-based that synthesizes directional feedback from the historical optimization trace to achieve reliable improvement over iterations.
arXiv Detail & Related papers (2024-05-26T05:22:35Z) - Large Language Models As Evolution Strategies [6.873777465945062]
In this work, we investigate whether large language models (LLMs) are in principle capable of implementing evolutionary optimization algorithms.
We introduce a novel prompting strategy, consisting of least-to-most sorting of discretized population members.
We find that our setup allows the user to obtain an LLM-based evolution strategy, which we call EvoLLM', that robustly outperforms baseline algorithms.
arXiv Detail & Related papers (2024-02-28T15:02:17Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: An Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
We propose a novel perspective to investigate the design of large language models (LLMs)-based prompts.
We identify two pivotal factors in model parameter learning: update direction and update method.
In particular, we borrow the theoretical framework and learning methods from gradient-based optimization to design improved strategies.
arXiv Detail & Related papers (2024-02-27T15:05:32Z) - Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark [166.40879020706151]
This paper proposes a shift towards BP-free, zeroth-order (ZO) optimization as a solution for reducing memory costs during fine-tuning.
Unlike traditional ZO-SGD methods, our work expands the exploration to a wider array of ZO optimization techniques.
Our study unveils previously overlooked optimization principles, highlighting the importance of task alignment, the role of the forward gradient method, and the balance between algorithm complexity and fine-tuning performance.
arXiv Detail & Related papers (2024-02-18T14:08:48Z) - An Invariant Information Geometric Method for High-Dimensional Online
Optimization [9.538618632613714]
We introduce a full invariance oriented evolution strategies algorithm, derived from its corresponding framework.
We benchmark SynCMA against leading algorithms in Bayesian optimization and evolution strategies.
In all scenarios, SynCMA demonstrates great competence, if not dominance, over other algorithms in sample efficiency.
arXiv Detail & Related papers (2024-01-03T07:06:26Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.