Interactive Garment Recommendation with User in the Loop
- URL: http://arxiv.org/abs/2402.11627v1
- Date: Sun, 18 Feb 2024 16:01:28 GMT
- Title: Interactive Garment Recommendation with User in the Loop
- Authors: Federico Becattini, Xiaolin Chen, Andrea Puccia, Haokun Wen, Xuemeng
Song, Liqiang Nie, Alberto Del Bimbo
- Abstract summary: We propose to build a user profile on the fly by integrating user reactions as we recommend complementary items to compose an outfit.
We present a reinforcement learning agent capable of suggesting appropriate garments and ingesting user feedback to improve its recommendations.
- Score: 77.35411131350833
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recommending fashion items often leverages rich user profiles and makes
targeted suggestions based on past history and previous purchases. In this
paper, we work under the assumption that no prior knowledge is given about a
user. We propose to build a user profile on the fly by integrating user
reactions as we recommend complementary items to compose an outfit. We present
a reinforcement learning agent capable of suggesting appropriate garments and
ingesting user feedback so to improve its recommendations and maximize user
satisfaction. To train such a model, we resort to a proxy model to be able to
simulate having user feedback in the training loop. We experiment on the
IQON3000 fashion dataset and we find that a reinforcement learning-based agent
becomes capable of improving its recommendations by taking into account
personal preferences. Furthermore, such task demonstrated to be hard for
non-reinforcement models, that cannot exploit exploration during training.
Related papers
- Personalized Language Modeling from Personalized Human Feedback [49.344833339240566]
Reinforcement Learning from Human Feedback (RLHF) is commonly used to fine-tune large language models to better align with human preferences.
In this work, we aim to address this problem by developing methods for building personalized language models.
arXiv Detail & Related papers (2024-02-06T04:18:58Z) - Learning from Negative User Feedback and Measuring Responsiveness for
Sequential Recommenders [13.762960304406016]
We introduce explicit and implicit negative user feedback into the training objective of sequential recommenders.
We demonstrate the effectiveness of this approach using live experiments on a large-scale industrial recommender system.
arXiv Detail & Related papers (2023-08-23T17:16:07Z) - Editable User Profiles for Controllable Text Recommendation [66.00743968792275]
We propose LACE, a novel concept value bottleneck model for controllable text recommendations.
LACE represents each user with a succinct set of human-readable concepts.
It learns personalized representations of the concepts based on user documents.
arXiv Detail & Related papers (2023-04-09T14:52:18Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
Sequential recommender models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform.
Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online.
Intent modeling is thus critical for understanding users and optimizing long-term user experience.
arXiv Detail & Related papers (2022-11-17T19:00:24Z) - Recommendation with User Active Disclosing Willingness [20.306413327597603]
We study a novel recommendation paradigm, where the users are allowed to indicate their "willingness" on disclosing different behaviors.
We conduct extensive experiments to demonstrate the effectiveness of our model on balancing the recommendation quality and user disclosing willingness.
arXiv Detail & Related papers (2022-10-25T04:43:40Z) - Reward Shaping for User Satisfaction in a REINFORCE Recommender [24.65853598093849]
We propose a policy network and a satisfaction imputation network to learn which actions are satisfying to the user.
The role of the imputation network is to learn which actions are satisfying to the user; while the policy network, built on top of REINFORCE, decides which items to recommend.
arXiv Detail & Related papers (2022-09-30T01:29:12Z) - ELIXIR: Learning from User Feedback on Explanations to Improve
Recommender Models [26.11434743591804]
We devise a human-in-the-loop framework, called ELIXIR, where user feedback on explanations is leveraged for pairwise learning of user preferences.
ELIXIR leverages feedback on pairs of recommendations and explanations to learn user-specific latent preference vectors.
Our framework is instantiated using generalized graph recommendation via Random Walk with Restart.
arXiv Detail & Related papers (2021-02-15T13:43:49Z) - Offline Meta-level Model-based Reinforcement Learning Approach for
Cold-Start Recommendation [27.17948754183511]
Reinforcement learning has shown great promise in optimizing long-term user interest in recommender systems.
Existing RL-based recommendation methods need a large number of interactions for each user to learn a robust recommendation policy.
We propose a meta-level model-based reinforcement learning approach for fast user adaptation.
arXiv Detail & Related papers (2020-12-04T08:58:35Z) - Generative Inverse Deep Reinforcement Learning for Online Recommendation [62.09946317831129]
We propose a novel inverse reinforcement learning approach, namely InvRec, for online recommendation.
InvRec extracts the reward function from user's behaviors automatically, for online recommendation.
arXiv Detail & Related papers (2020-11-04T12:12:25Z) - Empowering Active Learning to Jointly Optimize System and User Demands [70.66168547821019]
We propose a new active learning approach that jointly optimize the active learning system (training efficiently) and the user (receiving useful instances)
We study our approach in an educational application, which particularly benefits from this technique as the system needs to rapidly learn to predict the appropriateness of an exercise to a particular user.
We evaluate multiple learning strategies and user types with data from real users and find that our joint approach better satisfies both objectives when alternative methods lead to many unsuitable exercises for end users.
arXiv Detail & Related papers (2020-05-09T16:02:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.