SDGE: Stereo Guided Depth Estimation for 360$^\circ$ Camera Sets
- URL: http://arxiv.org/abs/2402.11791v4
- Date: Tue, 2 Apr 2024 09:02:04 GMT
- Title: SDGE: Stereo Guided Depth Estimation for 360$^\circ$ Camera Sets
- Authors: Jialei Xu, Wei Yin, Dong Gong, Junjun Jiang, Xianming Liu,
- Abstract summary: Multi-camera systems are often used in autonomous driving to achieve a 360$circ$ perception.
These 360$circ$ camera sets often have limited or low-quality overlap regions, making multi-view stereo methods infeasible for the entire image.
We propose the Stereo Guided Depth Estimation (SGDE) method, which enhances depth estimation of the full image by explicitly utilizing multi-view stereo results on the overlap.
- Score: 65.64958606221069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Depth estimation is a critical technology in autonomous driving, and multi-camera systems are often used to achieve a 360$^\circ$ perception. These 360$^\circ$ camera sets often have limited or low-quality overlap regions, making multi-view stereo methods infeasible for the entire image. Alternatively, monocular methods may not produce consistent cross-view predictions. To address these issues, we propose the Stereo Guided Depth Estimation (SGDE) method, which enhances depth estimation of the full image by explicitly utilizing multi-view stereo results on the overlap. We suggest building virtual pinhole cameras to resolve the distortion problem of fisheye cameras and unify the processing for the two types of 360$^\circ$ cameras. For handling the varying noise on camera poses caused by unstable movement, the approach employs a self-calibration method to obtain highly accurate relative poses of the adjacent cameras with minor overlap. These enable the use of robust stereo methods to obtain high-quality depth prior in the overlap region. This prior serves not only as an additional input but also as pseudo-labels that enhance the accuracy of depth estimation methods and improve cross-view prediction consistency. The effectiveness of SGDE is evaluated on one fisheye camera dataset, Synthetic Urban, and two pinhole camera datasets, DDAD and nuScenes. Our experiments demonstrate that SGDE is effective for both supervised and self-supervised depth estimation, and highlight the potential of our method for advancing downstream autonomous driving technologies, such as 3D object detection and occupancy prediction.
Related papers
- Robust and Flexible Omnidirectional Depth Estimation with Multiple 360° Cameras [8.850391039025077]
We use geometric constraints and redundant information of multiple 360-degree cameras to achieve robust and flexible omnidirectional depth estimation.
Our two algorithms achieve state-of-the-art performance, accurately predicting depth maps even when provided with soiled panorama inputs.
arXiv Detail & Related papers (2024-09-23T07:31:48Z) - Depth Estimation Analysis of Orthogonally Divergent Fisheye Cameras with
Distortion Removal [0.0]
Traditional stereo vision systems may not be suitable for certain scenarios due to their limited field of view.
Fisheye cameras introduce significant distortion at the edges that affects the accuracy of stereo matching and depth estimation.
This paper proposes a method for distortion-removal and depth estimation analysis for stereovision system.
arXiv Detail & Related papers (2023-07-07T13:44:12Z) - Multi-Camera Collaborative Depth Prediction via Consistent Structure
Estimation [75.99435808648784]
We propose a novel multi-camera collaborative depth prediction method.
It does not require large overlapping areas while maintaining structure consistency between cameras.
Experimental results on DDAD and NuScenes datasets demonstrate the superior performance of our method.
arXiv Detail & Related papers (2022-10-05T03:44:34Z) - CrossDTR: Cross-view and Depth-guided Transformers for 3D Object
Detection [10.696619570924778]
We propose Cross-view and Depth-guided Transformers for 3D Object Detection, CrossDTR.
Our method hugely surpassed existing multi-camera methods by 10 percent in pedestrian detection and about 3 percent in overall mAP and NDS metrics.
arXiv Detail & Related papers (2022-09-27T16:23:12Z) - Uncertainty Guided Depth Fusion for Spike Camera [49.41822923588663]
We propose a novel Uncertainty-Guided Depth Fusion (UGDF) framework to fuse predictions of monocular and stereo depth estimation networks for spike camera.
Our framework is motivated by the fact that stereo spike depth estimation achieves better results at close range.
In order to demonstrate the advantage of spike depth estimation over traditional camera depth estimation, we contribute a spike-depth dataset named CitySpike20K.
arXiv Detail & Related papers (2022-08-26T13:04:01Z) - Monocular 3D Object Detection with Depth from Motion [74.29588921594853]
We take advantage of camera ego-motion for accurate object depth estimation and detection.
Our framework, named Depth from Motion (DfM), then uses the established geometry to lift 2D image features to the 3D space and detects 3D objects thereon.
Our framework outperforms state-of-the-art methods by a large margin on the KITTI benchmark.
arXiv Detail & Related papers (2022-07-26T15:48:46Z) - SurroundDepth: Entangling Surrounding Views for Self-Supervised
Multi-Camera Depth Estimation [101.55622133406446]
We propose a SurroundDepth method to incorporate the information from multiple surrounding views to predict depth maps across cameras.
Specifically, we employ a joint network to process all the surrounding views and propose a cross-view transformer to effectively fuse the information from multiple views.
In experiments, our method achieves the state-of-the-art performance on the challenging multi-camera depth estimation datasets.
arXiv Detail & Related papers (2022-04-07T17:58:47Z) - Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo [71.59494156155309]
Existing approaches for multi-view 3D pose estimation explicitly establish cross-view correspondences to group 2D pose detections from multiple camera views.
We present our multi-view 3D pose estimation approach based on plane sweep stereo to jointly address the cross-view fusion and 3D pose reconstruction in a single shot.
arXiv Detail & Related papers (2021-04-06T03:49:35Z) - Self-Attention Dense Depth Estimation Network for Unrectified Video
Sequences [6.821598757786515]
LiDAR and radar sensors are the hardware solution for real-time depth estimation.
Deep learning based self-supervised depth estimation methods have shown promising results.
We propose a self-attention based depth and ego-motion network for unrectified images.
arXiv Detail & Related papers (2020-05-28T21:53:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.