Robust and Flexible Omnidirectional Depth Estimation with Multiple 360° Cameras
- URL: http://arxiv.org/abs/2409.14766v1
- Date: Mon, 23 Sep 2024 07:31:48 GMT
- Title: Robust and Flexible Omnidirectional Depth Estimation with Multiple 360° Cameras
- Authors: Ming Li, Xueqian Jin, Xuejiao Hu, Jinghao Cao, Sidan Du, Yang Li,
- Abstract summary: We use geometric constraints and redundant information of multiple 360-degree cameras to achieve robust and flexible omnidirectional depth estimation.
Our two algorithms achieve state-of-the-art performance, accurately predicting depth maps even when provided with soiled panorama inputs.
- Score: 8.850391039025077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Omnidirectional depth estimation has received much attention from researchers in recent years. However, challenges arise due to camera soiling and variations in camera layouts, affecting the robustness and flexibility of the algorithm. In this paper, we use the geometric constraints and redundant information of multiple 360-degree cameras to achieve robust and flexible multi-view omnidirectional depth estimation. We implement two algorithms, in which the two-stage algorithm obtains initial depth maps by pairwise stereo matching of multiple cameras and fuses the multiple depth maps to achieve the final depth estimation; the one-stage algorithm adopts spherical sweeping based on hypothetical depths to construct a uniform spherical matching cost of the multi-camera images and obtain the depth. Additionally, a generalized epipolar equirectangular projection is introduced to simplify the spherical epipolar constraints. To overcome panorama distortion, a spherical feature extractor is implemented. Furthermore, a synthetic 360-degree dataset consisting of 12K road scene panoramas and 3K ground truth depth maps is presented to train and evaluate 360-degree depth estimation algorithms. Our dataset takes soiled camera lenses and glare into consideration, which is more consistent with the real-world environment. Experiments show that our two algorithms achieve state-of-the-art performance, accurately predicting depth maps even when provided with soiled panorama inputs. The flexibility of the algorithms is experimentally validated in terms of camera layouts and numbers.
Related papers
- Blur aware metric depth estimation with multi-focus plenoptic cameras [8.508198765617196]
We present a new metric depth estimation algorithm using only raw images from a multi-focus plenoptic camera.
The proposed approach is especially suited for the multi-focus configuration where several micro-lenses with different focal lengths are used.
arXiv Detail & Related papers (2023-08-08T13:38:50Z) - FS-Depth: Focal-and-Scale Depth Estimation from a Single Image in Unseen
Indoor Scene [57.26600120397529]
It has long been an ill-posed problem to predict absolute depth maps from single images in real (unseen) indoor scenes.
We develop a focal-and-scale depth estimation model to well learn absolute depth maps from single images in unseen indoor scenes.
arXiv Detail & Related papers (2023-07-27T04:49:36Z) - Multi-Camera Collaborative Depth Prediction via Consistent Structure
Estimation [75.99435808648784]
We propose a novel multi-camera collaborative depth prediction method.
It does not require large overlapping areas while maintaining structure consistency between cameras.
Experimental results on DDAD and NuScenes datasets demonstrate the superior performance of our method.
arXiv Detail & Related papers (2022-10-05T03:44:34Z) - 360 Depth Estimation in the Wild -- The Depth360 Dataset and the SegFuse
Network [35.03201732370496]
Single-view depth estimation from omnidirectional images has gained popularity with its wide range of applications such as autonomous driving and scene reconstruction.
In this work, we first establish a large-scale dataset with varied settings called Depth360 to tackle the training data problem.
We then propose an end-to-end two-branch multi-task learning network, SegFuse, that mimics the human eye to effectively learn from the dataset.
arXiv Detail & Related papers (2022-02-16T11:56:31Z) - Panoramic Depth Estimation via Supervised and Unsupervised Learning in
Indoor Scenes [8.48364407942494]
We introduce panoramic images to obtain larger field of view.
We improve the training process of the neural network adapted to the characteristics of panoramic images.
With a comprehensive variety of experiments, this research demonstrates the effectiveness of our schemes aiming for indoor scene perception.
arXiv Detail & Related papers (2021-08-18T09:58:44Z) - Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo [71.59494156155309]
Existing approaches for multi-view 3D pose estimation explicitly establish cross-view correspondences to group 2D pose detections from multiple camera views.
We present our multi-view 3D pose estimation approach based on plane sweep stereo to jointly address the cross-view fusion and 3D pose reconstruction in a single shot.
arXiv Detail & Related papers (2021-04-06T03:49:35Z) - Deep Two-View Structure-from-Motion Revisited [83.93809929963969]
Two-view structure-from-motion (SfM) is the cornerstone of 3D reconstruction and visual SLAM.
We propose to revisit the problem of deep two-view SfM by leveraging the well-posedness of the classic pipeline.
Our method consists of 1) an optical flow estimation network that predicts dense correspondences between two frames; 2) a normalized pose estimation module that computes relative camera poses from the 2D optical flow correspondences, and 3) a scale-invariant depth estimation network that leverages epipolar geometry to reduce the search space, refine the dense correspondences, and estimate relative depth maps.
arXiv Detail & Related papers (2021-04-01T15:31:20Z) - Robust Consistent Video Depth Estimation [65.53308117778361]
We present an algorithm for estimating consistent dense depth maps and camera poses from a monocular video.
Our algorithm combines two complementary techniques: (1) flexible deformation-splines for low-frequency large-scale alignment and (2) geometry-aware depth filtering for high-frequency alignment of fine depth details.
In contrast to prior approaches, our method does not require camera poses as input and achieves robust reconstruction for challenging hand-held cell phone captures containing a significant amount of noise, shake, motion blur, and rolling shutter deformations.
arXiv Detail & Related papers (2020-12-10T18:59:48Z) - Video Depth Estimation by Fusing Flow-to-Depth Proposals [65.24533384679657]
We present an approach with a differentiable flow-to-depth layer for video depth estimation.
The model consists of a flow-to-depth layer, a camera pose refinement module, and a depth fusion network.
Our approach outperforms state-of-the-art depth estimation methods, and has reasonable cross dataset generalization capability.
arXiv Detail & Related papers (2019-12-30T10:45:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.