Generative Kaleidoscopic Networks
- URL: http://arxiv.org/abs/2402.11793v4
- Date: Tue, 22 Oct 2024 04:15:49 GMT
- Title: Generative Kaleidoscopic Networks
- Authors: Harsh Shrivastava,
- Abstract summary: We utilize this property of neural networks to design a dataset kaleidoscope, termed as Generative Kaleidoscopic Networks'
We observed this phenomenon to various degrees for the other deep learning architectures like CNNs, Transformers & U-Nets.
- Score: 2.321684718906739
- License:
- Abstract: We discovered that the neural networks, especially the deep ReLU networks, demonstrate an `over-generalization' phenomenon. That is, the output values for the inputs that were not seen during training are mapped close to the output range that were observed during the learning process. In other words, the neural networks learn a many-to-one mapping and this effect is more prominent as we increase the number of layers or the depth of the neural network. We utilize this property of neural networks to design a dataset kaleidoscope, termed as `Generative Kaleidoscopic Networks'. Succinctly, if we learn a model to map from input $x\in\mathbb{R}^D$ to itself $f_\mathcal{N}(x)\rightarrow x$, the proposed `Kaleidoscopic sampling' procedure starts with a random input noise $z\in\mathbb{R}^D$ and recursively applies $f_\mathcal{N}(\cdots f_\mathcal{N}(z)\cdots )$. After a burn-in period duration, we start observing samples from the input distribution and the quality of samples recovered improves as we increase the depth of the model. Scope: We observed this phenomenon to various degrees for the other deep learning architectures like CNNs, Transformers & U-Nets and we are currently investigating them further.
Related papers
- Sliding down the stairs: how correlated latent variables accelerate learning with neural networks [8.107431208836426]
We show that correlations between latent variables along directions encoded in different input cumulants speed up learning from higher-order correlations.
Our results are confirmed in simulations of two-layer neural networks.
arXiv Detail & Related papers (2024-04-12T17:01:25Z) - Graph Neural Networks Provably Benefit from Structural Information: A
Feature Learning Perspective [53.999128831324576]
Graph neural networks (GNNs) have pioneered advancements in graph representation learning.
This study investigates the role of graph convolution within the context of feature learning theory.
arXiv Detail & Related papers (2023-06-24T10:21:11Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Depth Degeneracy in Neural Networks: Vanishing Angles in Fully Connected ReLU Networks on Initialization [5.678271181959529]
We study the evolution of the angle between two inputs to a ReLU neural network as a function of the number of layers.
We validate our theoretical results with Monte Carlo experiments and show that our results accurately approximate finite network behaviour.
We also empirically investigate how the depth degeneracy phenomenon can negatively impact training of real networks.
arXiv Detail & Related papers (2023-02-20T01:30:27Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
We analyze the performance of training a pruned neural network by analyzing the geometric structure of the objective function.
We show that the convex region near a desirable model with guaranteed generalization enlarges as the neural network model is pruned.
arXiv Detail & Related papers (2021-10-12T01:11:07Z) - Redundant representations help generalization in wide neural networks [71.38860635025907]
We study the last hidden layer representations of various state-of-the-art convolutional neural networks.
We find that if the last hidden representation is wide enough, its neurons tend to split into groups that carry identical information, and differ from each other only by statistically independent noise.
arXiv Detail & Related papers (2021-06-07T10:18:54Z) - Generalized Leverage Score Sampling for Neural Networks [82.95180314408205]
Leverage score sampling is a powerful technique that originates from theoretical computer science.
In this work, we generalize the results in [Avron, Kapralov, Musco, Musco, Velingker and Zandieh 17] to a broader class of kernels.
arXiv Detail & Related papers (2020-09-21T14:46:01Z) - Towards Understanding Hierarchical Learning: Benefits of Neural
Representations [160.33479656108926]
In this work, we demonstrate that intermediate neural representations add more flexibility to neural networks.
We show that neural representation can achieve improved sample complexities compared with the raw input.
Our results characterize when neural representations are beneficial, and may provide a new perspective on why depth is important in deep learning.
arXiv Detail & Related papers (2020-06-24T02:44:54Z) - Dynamic Bayesian Neural Networks [2.28438857884398]
We define an evolving in time neural network called a Hidden Markov neural network.
Weights of a feed-forward neural network are modelled with the hidden states of a Hidden Markov model.
A filtering algorithm is used to learn a variational approximation to the evolving in time posterior over the weights.
arXiv Detail & Related papers (2020-04-15T09:18:18Z) - A Deep Conditioning Treatment of Neural Networks [37.192369308257504]
We show that depth improves trainability of neural networks by improving the conditioning of certain kernel matrices of the input data.
We provide versions of the result that hold for training just the top layer of the neural network, as well as for training all layers via the neural tangent kernel.
arXiv Detail & Related papers (2020-02-04T20:21:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.