Generalized Leverage Score Sampling for Neural Networks
- URL: http://arxiv.org/abs/2009.09829v1
- Date: Mon, 21 Sep 2020 14:46:01 GMT
- Title: Generalized Leverage Score Sampling for Neural Networks
- Authors: Jason D. Lee, Ruoqi Shen, Zhao Song, Mengdi Wang, Zheng Yu
- Abstract summary: Leverage score sampling is a powerful technique that originates from theoretical computer science.
In this work, we generalize the results in [Avron, Kapralov, Musco, Musco, Velingker and Zandieh 17] to a broader class of kernels.
- Score: 82.95180314408205
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Leverage score sampling is a powerful technique that originates from
theoretical computer science, which can be used to speed up a large number of
fundamental questions, e.g. linear regression, linear programming,
semi-definite programming, cutting plane method, graph sparsification, maximum
matching and max-flow. Recently, it has been shown that leverage score sampling
helps to accelerate kernel methods [Avron, Kapralov, Musco, Musco, Velingker
and Zandieh 17].
In this work, we generalize the results in [Avron, Kapralov, Musco, Musco,
Velingker and Zandieh 17] to a broader class of kernels. We further bring the
leverage score sampling into the field of deep learning theory.
$\bullet$ We show the connection between the initialization for neural
network training and approximating the neural tangent kernel with random
features.
$\bullet$ We prove the equivalence between regularized neural network and
neural tangent kernel ridge regression under the initialization of both
classical random Gaussian and leverage score sampling.
Related papers
- Neural Network-Based Score Estimation in Diffusion Models: Optimization
and Generalization [12.812942188697326]
Diffusion models have emerged as a powerful tool rivaling GANs in generating high-quality samples with improved fidelity, flexibility, and robustness.
A key component of these models is to learn the score function through score matching.
Despite empirical success on various tasks, it remains unclear whether gradient-based algorithms can learn the score function with a provable accuracy.
arXiv Detail & Related papers (2024-01-28T08:13:56Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Neural Networks with Sparse Activation Induced by Large Bias: Tighter Analysis with Bias-Generalized NTK [86.45209429863858]
We study training one-hidden-layer ReLU networks in the neural tangent kernel (NTK) regime.
We show that the neural networks possess a different limiting kernel which we call textitbias-generalized NTK
We also study various properties of the neural networks with this new kernel.
arXiv Detail & Related papers (2023-01-01T02:11:39Z) - Critical Initialization of Wide and Deep Neural Networks through Partial
Jacobians: General Theory and Applications [6.579523168465526]
We introduce emphpartial Jacobians of a network, defined as derivatives of preactivations in layer $l$ with respect to preactivations in layer $l_0leq l$.
We derive recurrence relations for the norms of partial Jacobians and utilize these relations to analyze criticality of deep fully connected neural networks with LayerNorm and/or residual connections.
arXiv Detail & Related papers (2021-11-23T20:31:42Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
We analyze the performance of training a pruned neural network by analyzing the geometric structure of the objective function.
We show that the convex region near a desirable model with guaranteed generalization enlarges as the neural network model is pruned.
arXiv Detail & Related papers (2021-10-12T01:11:07Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
We propose an efficient feature map construction of the Neural Tangent Kernel (NTK) of fully-connected ReLU network.
We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice.
arXiv Detail & Related papers (2021-04-03T09:08:12Z) - Fast Adaptation with Linearized Neural Networks [35.43406281230279]
We study the inductive biases of linearizations of neural networks, which we show to be surprisingly good summaries of the full network functions.
Inspired by this finding, we propose a technique for embedding these inductive biases into Gaussian processes through a kernel designed from the Jacobian of the network.
In this setting, domain adaptation takes the form of interpretable posterior inference, with accompanying uncertainty estimation.
arXiv Detail & Related papers (2021-03-02T03:23:03Z) - Classifying high-dimensional Gaussian mixtures: Where kernel methods
fail and neural networks succeed [27.38015169185521]
We show theoretically that two-layer neural networks (2LNN) with only a few hidden neurons can beat the performance of kernel learning.
We show how over-parametrising the neural network leads to faster convergence, but does not improve its final performance.
arXiv Detail & Related papers (2021-02-23T15:10:15Z) - A Deep Conditioning Treatment of Neural Networks [37.192369308257504]
We show that depth improves trainability of neural networks by improving the conditioning of certain kernel matrices of the input data.
We provide versions of the result that hold for training just the top layer of the neural network, as well as for training all layers via the neural tangent kernel.
arXiv Detail & Related papers (2020-02-04T20:21:36Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.