Automating Dataset Updates Towards Reliable and Timely Evaluation of Large Language Models
- URL: http://arxiv.org/abs/2402.11894v3
- Date: Thu, 6 Jun 2024 12:49:44 GMT
- Title: Automating Dataset Updates Towards Reliable and Timely Evaluation of Large Language Models
- Authors: Jiahao Ying, Yixin Cao, Yushi Bai, Qianru Sun, Bo Wang, Wei Tang, Zhaojun Ding, Yizhe Yang, Xuanjing Huang, Shuicheng Yan,
- Abstract summary: Large language models (LLMs) have achieved impressive performance across various natural language benchmarks.
We propose to automate dataset updating and provide systematic analysis regarding its effectiveness.
There are two updating strategies: 1) mimicking strategy to generate similar samples based on original data, and 2) extending strategy that further expands existing samples.
- Score: 81.27391252152199
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have achieved impressive performance across various natural language benchmarks, prompting a continual need to curate more difficult datasets for larger LLMs, which is costly and time-consuming. In this paper, we propose to automate dataset updating and provide systematic analysis regarding its effectiveness in dealing with benchmark leakage issue, difficulty control, and stability. Thus, once the current benchmark has been mastered or leaked, we can update it for timely and reliable evaluation. There are two updating strategies: 1) mimicking strategy to generate similar samples based on original data, preserving stylistic and contextual essence, and 2) extending strategy that further expands existing samples at varying cognitive levels by adapting Bloom's taxonomy of educational objectives. Extensive experiments on updated MMLU and BIG-Bench demonstrate the stability of the proposed strategies and find that the mimicking strategy can effectively alleviate issues of overestimation from benchmark leakage. In cases where the efficient mimicking strategy fails, our extending strategy still shows promising results. Additionally, by controlling the difficulty, we can better discern the models' performance and enable fine-grained analysis neither too difficult nor too easy an exam can fairly judge students' learning status. To the best of our knowledge, we are the first to automate updating benchmarks for reliable and timely evaluation. Our demo leaderboard can be found at https://yingjiahao14.github.io/Automating-DatasetUpdates/.
Related papers
- Position: LLM Unlearning Benchmarks are Weak Measures of Progress [31.957968729934745]
We find that existing benchmarks provide an overly optimistic and potentially misleading view on the effectiveness of candidate unlearning methods.
We identify that existing benchmarks are particularly vulnerable to modifications that introduce even loose dependencies between the forget and retain information.
arXiv Detail & Related papers (2024-10-03T18:07:25Z) - Realistic Evaluation of Test-Time Adaptation Algorithms: Unsupervised Hyperparameter Selection [1.4530711901349282]
Test-Time Adaptation (TTA) has emerged as a promising strategy for tackling the problem of machine learning model robustness under distribution shifts.
We evaluate existing TTA methods using surrogate-based hp-selection strategies to obtain a more realistic evaluation of their performance.
arXiv Detail & Related papers (2024-07-19T11:58:30Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - MixEval: Deriving Wisdom of the Crowd from LLM Benchmark Mixtures [57.886592207948844]
We propose MixEval, a new paradigm for establishing efficient, gold-standard evaluation by strategically mixing off-the-shelf benchmarks.
It bridges (1) comprehensive and well-distributed real-world user queries and (2) efficient and fairly-graded ground-truth-based benchmarks, by matching queries mined from the web with similar queries from existing benchmarks.
arXiv Detail & Related papers (2024-06-03T05:47:05Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
We propose a framework for self-supervised evaluation of Large Language Models (LLMs)
We demonstrate self-supervised evaluation strategies for measuring closed-book knowledge, toxicity, and long-range context dependence.
We find strong correlations between self-supervised and human-supervised evaluations.
arXiv Detail & Related papers (2023-06-23T17:59:09Z) - Re-Benchmarking Pool-Based Active Learning for Binary Classification [27.034593234956713]
Active learning is a paradigm that significantly enhances the performance of machine learning models when acquiring labeled data.
While several benchmarks exist for evaluating active learning strategies, their findings exhibit some misalignment.
This discrepancy motivates us to develop a transparent and reproducible benchmark for the community.
arXiv Detail & Related papers (2023-06-15T08:47:50Z) - Information Association for Language Model Updating by Mitigating
LM-Logical Discrepancy [68.31760483418901]
Large Language Models(LLMs) struggle with providing current information due to the outdated pre-training data.
Existing methods for updating LLMs, such as knowledge editing and continual fine-tuning, have significant drawbacks in generalizability of new information.
We identify the core challenge behind these drawbacks: the LM-logical discrepancy featuring the difference between language modeling probabilities and logical probabilities.
arXiv Detail & Related papers (2023-05-29T19:48:37Z) - Text Generation by Learning from Demonstrations [17.549815256968877]
Current approaches to text generation largely rely on autoregressive models and maximum likelihood estimation.
We propose GOLD: an easy-to-optimize algorithm that learns from expert demonstrations by importance weighting.
According to both automatic and human evaluation, models trained by GOLD outperform those trained by MLE and policy gradient.
arXiv Detail & Related papers (2020-09-16T17:58:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.