Cofca: A Step-Wise Counterfactual Multi-hop QA benchmark
- URL: http://arxiv.org/abs/2402.11924v5
- Date: Tue, 15 Oct 2024 05:47:19 GMT
- Title: Cofca: A Step-Wise Counterfactual Multi-hop QA benchmark
- Authors: Jian Wu, Linyi Yang, Zhen Wang, Manabu Okumura, Yue Zhang,
- Abstract summary: We introduce a Step-wise Counterfactual benchmark (CofCA), a novel evaluation benchmark consisting of factual data and counterfactual data.
Our experimental results reveal a significant performance gap between Wikipedia-based factual data and counterfactual data, deeming data contamination issues in existing benchmarks.
- Score: 39.64489055580211
- License:
- Abstract: While Large Language Models (LLMs) excel in question-answering (QA) tasks, their real reasoning abilities on multiple evidence retrieval and integration on Multi-hop QA tasks remain less explored. Firstly, LLMs sometimes generate answers that rely on internal memory rather than retrieving evidence and reasoning in the given context, which brings concerns about the evaluation quality of real reasoning abilities. Although previous counterfactual QA benchmarks can separate the internal memory of LLMs, they focus solely on final QA performance, which is insufficient for reporting LLMs' real reasoning abilities. Because LLMs are expected to engage in intricate reasoning processes that involve evidence retrieval and answering a series of sub-questions from given passages. Moreover, current factual Multi-hop QA (MHQA) benchmarks are annotated on open-source corpora such as Wikipedia, although useful for multi-step reasoning evaluation, they show limitations due to the potential data contamination in LLMs' pre-training stage. To address these issues, we introduce a Step-wise Counterfactual benchmark (CofCA), a novel evaluation benchmark consisting of factual data and counterfactual data that reveals LLMs' real reasoning abilities on multi-step reasoning and reasoning chain evaluation. Our experimental results reveal a significant performance gap of several LLMs between Wikipedia-based factual data and counterfactual data, deeming data contamination issues in existing benchmarks. Moreover, we observe that LLMs usually bypass the correct reasoning chain, showing an inflated multi-step reasoning performance. We believe that our CofCA benchmark will enhance and facilitate the evaluations of trustworthy LLMs.
Related papers
- CounterBench: A Benchmark for Counterfactuals Reasoning in Large Language Models [5.409370027524351]
We evaluate the performance of large language models (LLMs) in counterfactual reasoning.
We introduce a new benchmark dataset, CounterBench, comprising 1K counterfactual reasoning questions.
arXiv Detail & Related papers (2025-02-16T06:19:37Z) - Investigating the Shortcomings of LLMs in Step-by-Step Legal Reasoning [34.427730009102966]
We develop an automated evaluation framework to identify reasoning errors and evaluate the performance of LLMs.
Our work will also serve as an evaluation framework that can be used in detailed error analysis of reasoning chains for logic-intensive complex tasks.
arXiv Detail & Related papers (2025-02-08T19:49:32Z) - CARL-GT: Evaluating Causal Reasoning Capabilities of Large Language Models [18.975064947089805]
Causal reasoning capabilities are essential for large language models (LLMs) in a wide range of applications, such as education and healthcare.
We provide a benchmark, named by CARL-GT, which evaluates CAusal Reasoning capabilities of large Language models using Graphs and Tabular data.
arXiv Detail & Related papers (2024-12-23T20:34:32Z) - A Real-World Benchmark for Evaluating Fine-Grained Issue Solving Capabilities of Large Language Models [11.087034068992653]
FAUN-Eval is a benchmark specifically designed to evaluate the Fine-grAined issUe solviNg capabilities of LLMs.
It is constructed using a dataset curated from 30 well-known GitHub repositories.
We evaluate ten LLMs with FAUN-Eval, including four closed-source and six open-source models.
arXiv Detail & Related papers (2024-11-27T03:25:44Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs [52.42505579545893]
Large language models (LLMs) demonstrate strong reasoning abilities when prompted to generate chain-of-thought explanations alongside answers.
We propose a novel discriminative and generative CoT evaluation paradigm to assess LLMs' knowledge of reasoning and the accuracy of the generated CoT.
arXiv Detail & Related papers (2024-02-17T05:22:56Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
Multi-modal Large Language Models (MLLMs) are increasingly prominent in the field of artificial intelligence.
Our benchmark comprises three key reasoning categories: deductive, abductive, and analogical reasoning.
We evaluate a selection of representative MLLMs using this rigorously developed open-ended multi-step elaborate reasoning benchmark.
arXiv Detail & Related papers (2023-11-20T07:06:31Z) - Towards Robust Temporal Reasoning of Large Language Models via a Multi-Hop QA Dataset and Pseudo-Instruction Tuning [73.51314109184197]
It is crucial for large language models (LLMs) to understand the concept of temporal knowledge.
We propose a complex temporal question-answering dataset Complex-TR that focuses on multi-answer and multi-hop temporal reasoning.
arXiv Detail & Related papers (2023-11-16T11:49:29Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.